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Preface 

 

The work presented in this thesis was conducted between April 2009 and June 2012 at the National Food 

Institute, Technical University of Denmark. 

 

The idea behind this PhD was to contribute to the path being built towards source attribution of foodborne 

salmonellosis at a Global level, and it was inspired by the activities of the World Health Organization 

Foodborne Disease Epidemiology Reference Group (FERG) and of the Global Foodborne Infections 

Network (GFN). Due to the current data availability when starting the project, the European Union was 

chosen as the best scenario to rehearse multi-country approaches that can later be adapted to different 

realities. 

 

The European Union model was developed as part of a contract CT/EFSA/Zoonoses/2010/02 between the 

European Food Safety Authority and the DTU National Food Institute, in relation to EFSA Question n  

EFSA-Q-2010-00685. 

 

The comparison between the Danish and EU models was performed as per request of the Danish Food 

Administration (Fødevarestyrelsen). 

 

Oticon Fonden granted me partial financial support to attend to the USDA Food Safety Education 

Conference and the Second Formal Meeting of the FERG Country Studies Task Force in Atlanta, March 

2010, as well as to my external stay at the WHO Department of Food Safety and Zoonoses (WHO/FOS) in 

Geneva, from July to December 2010. 

 

The author hopes that the materials and methods presented in this thesis are useful to improve the quality of 

life of populations threatened by infections of foodborne transmission.  

 

 

 

 

Søborg, January 2013 

Leonardo de Knegt 
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Summary 

This thesis presents a mathematical modeling approach to estimate the contribution of four animal 

reservoirs of the food chain to the occurrence of salmonellosis cases in humans in the European Union (Part 

I). In addition, an alternative and more explorative approach based on expert elicitation is attempted in order 

to extrapolate results to countries with less data availability, as a first step to perform source attribution of 

Salmonella in a more global perspective (Part II). 

Cases of salmonellosis in humans were attributed to travel, foodborne outbreaks and four food animal 

reservoirs, namely pigs, broilers, turkeys and laying hens, using a Bayesian model based on microbial 

subtyping in 24 countries of the European Union. The chosen approach is recognized as data intensive, 

requiring numbers for Salmonella occurrence in food-producing animals, reported human cases, information 

on possibility of infection abroad (from here on referred to as “travel information”), human cases originating 

from outbreaks with and without a confirmed source and amounts of the meat or eggs available for 

consumption in each country. Thus, thorough data management, analysis and validation were required to 

produce a dataset containing standardized information for all countries (Manuscript I).  

Data on reported human cases were provided by the European Centre for Disease Prevention and 

Control (ECDC) through the European Food Safety Authority (EFSA). Salmonella prevalences in animals 

were obtained from the EU-wide baseline studies (BS) (pigs and turkeys) conducted by EFSA and from the 

results of the harmonized monitoring (broiler and laying hens) reported in the European Union Summary 

Report (EUSR), as published by EFSA. Information on outbreaks was also provided by EFSA. The amount 

of food available for consumption was calculated based on trade data obtained from the European Statistical 

Office (EUROSTAT) and complemented with information from the Association of Poultry Processors and 

Poultry Trade in the European Union Countries (AVEC). Common limitations included non-participation in 

all BS, non-reporting of outbreaks or travel information, non-reporting of serovar-specific information, non-

reporting of case-based data and non-availability of trade data on EUROSTAT. In order to standardize the 

information available, cases without travel information were assumed to be domestic; cases without specific 

serovar information were redistributed according to serovar proportions observed in the same dataset or other 

reference documents; missing trade information was estimated based on previous years, and non-

participation in a BS was supplied, where possible, with data from the EUSR. When the lack of original data 

was considered too extreme to the point of compromising the attribution results, countries were excluded. 

The resulting dataset comprised Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, 

France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Poland, 

Portugal, Slovakia, Slovenia, Spain, Sweden and the United Kingdom. Three countries were included in the 

initial analysis, but were excluded from the final dataset. Those were: Bulgaria, which presented 100% of 

human cases without serovar detailing; and Romania, which only participated in one BS and had not enough 

surrogate data to be retrieved from the EUSR, besides reporting a large parcel of cases without serovar 

information (Manuscript I).  

A Bayesian modeling approach which compares the occurrence of serovars in humans with the 

occurrence of the same serovars in animals of the food-chain was used to estimate the contribution of each of 

these reservoirs, travel and outbreaks to the number of human cases of salmonellosis in the 24 countries 

present in the dataset mentioned above (Manuscript II). Laying hens (i.e. eggs) were estimated to be the most 

important source of human salmonellosis at EU level, with 42.4% (7,903,000 cases, 95% Credibility Interval 

(CI) 4,181,000 – 14,510,000) of cases, followed by 31.1% attributed to pigs (5,800,000 cases, 95% CI 

2,973,000 – 11,100,000). Broilers and turkeys were estimated to be less important sources of Salmonella, 

contributing with 12.6% (2,350,000 cases, 95% CI 736,300 – 6,194,000) and 3.8% (702,400 cases, 95% CI 

325,500 – 1,590,000), respectively. A total of 1.6% (292,400 cases, 95% CI 150,700 – 562,700) of all 

salmonellosis cases were reported as being travel-related, and 0.1% (13,848) of cases were reported as being 

part of outbreaks with unknown source. S. Enteritidis was the most important serovar in the study, and of all 

infections caused by this serovar, 63% (7,504,000 cases, 95% CI 3,964,000-13,770,000) were attributed to 

laying hens, whereas 90.8% of S. Typhimurium originated from pigs (2,950,000 cases, 95% CI 1,510,000-
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5,663,000). Country-specific results show laying hens as the most important source of salmonellosis in 13 

countries (Austria, Czech Republic, Estonia, Germany, Greece, Hungary, Latvia, Lithuania, Luxembourg, 

Slovenia, Slovakia, Spain and the United Kingdom), whereas pigs were the larger animal contributor in eight 

(Belgium, Cyprus, Finland, France, Ireland, Italy, Poland and Sweden). In Finland and Sweden the majority 

of Salmonella infections were estimated to be travel-related. Travel was also an important source in Ireland, 

the UK and Denmark, although to a lower extent. In the Netherlands, the proportion of disease attributed to 

layers and pigs were similar. In Denmark, the most important food-animal source was estimated to be 

turkeys, and broilers were the major source in Portugal. Countries estimated to be the main origin of the food 

sources causing salmonellosis cases in the EU were Poland, with 21.3% of cases (3,563,710 cases, 95% CI 

911,750 – 10,818,900), followed by 18.4% from Spain (3,081,090 cases, 95% CI 898,170 – 9,056,800) and 

14.5% from Portugal (2,422,142 cases, 95% CI 361,368 – 8,508,397) (Manuscript II).  

Danish strategies for risk management of Salmonella in the farm-to-fork continuum include the 

routine application of a source attribution model to estimate the contribution of the major animal-food 

sources to human infections by Salmonella in Denmark. This model concept formed the basis for the model 

described in Manuscript II. As part of the validation process of the EU model, results for Denmark in the EU 

model were compared with the ones obtained using the Danish model in the same period (Manuscript 

III).The Danish model points to pork as the main animal source of human salmonellosis in the period (9.3% 

of cases), followed closely by table eggs (7.5% of cases) and broilers (4.7% of cases), while the EU model 

attributed 18.0% to pigs, 19.6%  to turkeys, 10.1% to eggs and 3.5% to broilers. Travel-related cases 

constitute 30.6% in the Danish model and only 23.7% in the EU model. Cases that could not be attributed to 

any source corresponded to 16.7% in the Danish model and 18.3% in the European model. Discrepancies in 

numbers are explained by differences in model structure and basic assumptions: a) cases with no travel 

information in the Danish model are redistributed according to proportions observed in cases with full 

information; in the EU model, as some countries did not provide any information regarding travel prior to 

sickness, it had to be assumed that no information means no travel; b) the Danish model uses data subtyped 

to phage-type level, which allows for a more specific allocation of cases to the right sources as compared to 

the EU model; c) the larger number of sources in the Danish model allows for more options for specific 

allocation of cases, presumably resulting in a more correct distribution of cases among sources; d) the Danish 

model uses official data on amount of domestic and imported food items available for consumption in the 

country, but does not as opposed to the EU model take into account  the amount imported from each country 

specifically, which probably results in an underestimation of the contribution from high prevalence countries 

as compared to the EU model; e) the EU attributed sporadic cases were multiplied by an underreporting 

factor, altering the balance between sporadic and outbreak-related cases (Manuscript III). All things 

considered, the two models rank three out of the four sources in a similar order and, while the EU model is 

considered useful for countries which cannot readily attain the level of detailing found in Denmark for 

monitoring and surveillance data, Denmark would benefit more from applying country-specific data than to 

adopt the results of the EU model. 

The last chapter presents an alternative approach to obtain results for the Czech Republic, Norway, 

Bulgaria and Romania, the last two of which were excluded from the EU-model due to insufficient data. 

Using clustering techniques, 28 countries were grouped according to variables used to characterize them as 

to social and economic status, animal production characteristics and food consumption patterns. Where 

available, variables reflecting the occurrence of Salmonella enterica in humans and animals were also used. 

The results of the analyses were delivered to a panel of experts composed by foodborne disease 

epidemiologists and risk modelers, which were asked to provide attribution estimates for the aforementioned 

countries, based on their similarity to countries for which results were previously obtained. Experts were also 

asked to evaluate the method concerning its utility and applicability of results. Individual estimates were 

evaluated based on comparison with the Czech results, for which results based on the microbial subtyping 

model were available, but also in relation to uniformity of guesses and uncertainty intervals among different 

estimates from the same expert and among all experts in the panel. This evaluation resulted in five out of the 

seven respondents being maintained in the panel. Although the Czech Republic values obtained did not 

match the ones observed in the EU study, the order of importance of the animal sources was in agreement 
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between the two studies and there was also a consensus in the panel concerning that order. It is, therefore, 

believed that with some adjustments, this method may be useful for prioritizing targeted actions for 

Salmonella control in countries without sufficient data for a traditional approach. Further on, this method 

may be used to identify “surrogate countries” from where animal prevalence data can be “borrowed” and 

applied in the microbial subtyping approach in the aforementioned Member States. 

This PhD project has provided results for a European “source of infection account” for Salmonella, 

and has at the same time been evaluating the approaches attempted, raising questions and proposing 

solutions on how to deal with the lack of good-quality data for such studies. The project has also achieved 

results that may lay the groundwork for future attempts to develop Salmonella source attribution estimates in 

a more global perspective. 
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Sammendrag (Summary in Danish) 

 

Denne PhD afhandling beskriver udviklingen af en matematisk model, der estimerer det kvantitative 

bidrag fra fire husdyrreservoirer til forekomsten af Salmonella infektioner hos mennesker i den Europæiske 

Union (Del I). Med henblik på at ekstrapolere resultaterne til lande, hvor datatilgængeligheden er mindre, 

præsenteres desuden en alternativ og mere udforskende metode baseret på ekspertvurderinger. Sidstnævnte 

skal ses som et første skridt på vejen til at kvantificere betydningen af forskellige smittekilder for human 

salmonellose i et mere globalt perspektiv (Del II). 

Tilfælde af Salmonella infektioner blev tilskrevet udlandsrejse, fødevarebårne udbrud samt de fire 

husdyrreservoirer: svin, slagtekyllinger, kalkuner og konsumægsproducerende høner. Modellen inkluderede 

data fra 24 lande. Metoden kræver data vedr. Salmonella forekomst og serotypefordeling i husdyr, 

rapporterede infektioner hos mennesker, oplysninger om mulig erhvervelse af infektionen i udlandet (herfra 

benævnt "rejseinformation"), forekomst af fødevarebårne udbrud samt kilderne til disse, samt mængden af 

kød eller æg, som er til rådighed for forbrugerne i de enkelte lande. Datahåndtering, -analyse og -validering 

vurderedes at være af stor betydning for resultaternes kvalitet, og der blev derfor lagt vægt på at beskrive, 

hvad der kræves for at frembringe et datasæt med standardiserede oplysninger for alle lande (Manuskript I). 

Data om rapporterede Salmonella infektioner hos mennesker blev skaffet fra det Europæiske Center 

for Sygdomsforebyggelse og Kontrol (ECDC) via Den Europæiske Fødevaresikkerhedsautoritet (EFSA). 

Salmonella forekomsten i de fire husdyrarter blev indhentet fra de EU-dækkende baseline undersøgelser 

(BS) (svin og kalkuner) rapporteret af EFSA, samt fra resultaterne af den harmoniserede overvågning af 

Salmonella (slagtekyllinger og æglæggere) rapporteret i  Zoonoserapport (EUSR) ligeledes publiceret af 

EFSA. Oplysninger om fødevarebårne Salmonella udbrud blev også leveret af EFSA. Mængden af animalske 

fødevarer, der var til rådighed til forbrug blev estimeret på baggrund af data om fødevareproduktion og 

samhandel indhentet fra det europæiske statistisk kontor, EUROSTAT. Disse data blev suppleret med 

oplysninger fra sammenslutningen af fjerkræslagterier i EU, AVEC. Der var visse begrænsninger i data, som 

for nogle lande inkluderede manglende deltagelse i en eller flere af baseline undersøgelserne, manglende 

indberetning af fødevarebårne udbrud eller rejseinformation, manglende indberetning af serotype specifikke 

data, manglende indberetning af case-baserede data og manglende tilgængelighed af data i EUROSTAT. For 

at standardisere de foreliggende oplysninger, blev det antaget, at human tilfælde uden rejseinformation var 

indenlandsk erhvervede. Human tilfælde uden specifik serotype information blev tildelt en serotype i forhold 

til serotypefordelinger observeret i det samme datasæt eller fra andre referencedata. Manglende EUROSTAT 

data blev estimeret  på baggrund af tidligere års data, og manglende  data fra BS blev, hvor det var muligt, 

erstattet af data fra EUSR. For nogle lande var datamængden og – kvaliteten for ringe til, at de kunne indgå i 

modellen uden at kompromittere validiteten af resultaterne. Det endelige datasæt omfattede Østrig, Belgien, 

Cypern, Tjekkiet, Danmark, Estland, Finland, Frankrig, Tyskland, Grækenland, Ungarn, Irland, Italien, 

Letland, Litauen, Luxembourg, Holland, Polen, Portugal, Slovakiet, Slovenien, Spanien, Sverige og 

Storbritannien. Tre lande blev inkluderet i den indledende analyse, men ikke i det endelige datasæt. Det var 

Bulgarien, hvor 100% af de humane tilfælde ikke havde oplysning om serotype; samt Rumænien, som kun 

deltog i én baseline undersøgelse og ikke havde andre relevante data, og desuden havde en stor andel human 

tilfælde uden serotypeoplysning (Manuskript I). 

Den Bayesiansk model, som blev anvendt til den matematiske analyse, sammenligner 

serotypefordelingen i mennesker med serotypefordelingen i husdyrreservoirerne. Modellen estimerer antallet 

af tilfælde af human salmonellose i de 24 lande fra hvert af disse reservoirer, samt fra rejser og udbrud 

baseret på de ovennævnte data (Manuskript II). Resultaterne viste, at æglæggere var den mest 

betydningsfulde kilde til human salmonellose i EU, ansvarlig for 42,4% (7.903.000 tilfælde, 95% Credibility 

Interval (CI) 4.181.000 – 14.510.000) af tilfældene, efterfulgt af svin med 31,1% af tilfældene (5.800.000 

cases, 95% CI 2.973.000 – 11.100.000). Slagtekyllinger og kalkuner blev vurderet til at være mindre 

betydningsfulde kilder og bidrog med hhv. 12,6% (2.350.000 tilfælde, 95% CI 736.300 – 6.194.000) og 

3,8% (702.400 cases, 95% CI 325.500 – 1.590.000) af tilfældene. I alt 1,6% (292.400 tilfælde, 95% CI 

150.700 – 562.700) af alle salmonellose tilfælde blev rapporteret som værende rejserelaterede, mens 0,1% 
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(13.848) af tilfældene blev  rapporteret som dele af udbrud med ukendt kilde. S. Enteritidis var den hyppigst 

forekommende serotype, hvoraf 63% (7.504.000 cases, 95% CI 3.964.000-13.770.000) af disse infektioner 

blev tilskrevet æglæggere, mens 90,8% af S. Typhimurium infektionerne blev estimeret til at komme fra svin 

(2.950.000 tilfælde, 95% CI 1.510.000-5.663.000). Landespecifikke resultater viste, at æg var den vigtigste 

kilde til salmonellose i 13 lande (Østrig, Tjekkiet, Estland, Tyskland, Grækenland, Ungarn, Letland, Litauen, 

Luxembourg, Slovenien, Slovakiet, Spanien og Storbritannien), mens svin var den store bidragyder i otte 

(Belgien, Cypern, Finland, Frankrig, Irland, Italien, Polen og Sverige). I Finland og Sverige kunne 

hovedparten af salmonellainfektionerne relateres til udlandsrejse. Rejse var også en vigtig kilde i Irland, 

Storbritannien og Danmark om end i lavere grad. I Holland var andelen af infektioner fra æg og svin omtrent 

det samme. I Danmark blev den vigtigste fødevarekilde estimeret til at være kalkun, mens slagtekyllinger var 

den største kilde i Portugal. Kigger man på det samlede bidrag fra de enkelte lande, blev kilder fra Polen 

vurderet til at bidrage med den største del af samtlige salmonellainfektioner med et estimat på 21.3% af 

tilfælde (3,563,710 cases, 95% CI 911,750 – 10,818,900). Polllen blev efterfulgt at Spanien med 18.4% 

(3,081,090 tilfælde, 95% CI 898,170 – 9,056,800) og Portugal med14.5%  (2,422,142 tilfælde, 95% CI 

361,368 – 8,508,397) . (Manuskript II). 

Danske strategier for risikohåndtering af Salmonella i jord-til-bord kæden omfatter anvendelse af en 

såkaldt smittekilderegnskabsmodel, det estimerer bidraget fra de vigtigste animalske fødevarekilder til 

infektioner hos mennesker i Danmark. Det danske modelkoncept dannede grundlag for EU-modellen 

beskrevet i Manuskript II. Som en del af valideringsprocessen af EU-modellen, blev resultaterne for 

Danmark i EU-modellen sammenlignet med dem, der blev estimeret under brug af den danske model i 

samme periode (Manuskript III). Den danske model pegede på svinekød (9,3% af tilfælde), som den 

vigtigste kilde til salmonellose i perioden, efterfulgt af æg (7,5% af tilfælde) og slagtekyllinger (4,7% af 

tilfælde), mens EU modellen tilskrev 18,0% af tilfældene til svin, 19,6% til kalkuner 10,1% til æg og 3,5% 

til slagtekyllinger. Rejserelaterede tilfælde udgjorde 30,6% i den danske model og kun 23.7% i EU modellen. 

Tilfælde der ikke kunne relateres til nogen kendt kilde udgjorde 16,7% i den danske model og 18,3% i den 

europæiske model. De observerede uoverensstemmelser kan forklares ved forskelle i modellernes struktur og 

de grundlæggende antagelser: a) en andel af tilfældene uden rejseinformation tilskrives rejse i den danske 

model, hvilket baseres på proportionen af rejsetilfælde observeret for tilfælde med fuld rejseinformation; i 

EU-modellen antages det, at ingen rejseinformation er lig med ingen rejserelation, da mange lande ikke 

skelner mellem ”nej til rejse” og ”ingen rejseinformation”, b) den danske model anvender Salmonella 

typefordelinger baseret på både serotypning, fagtypning og resistensbestemmelse,  hvilket giver en mere 

specifik fordeling af tilfælde til de rigtige kilder sammenlignet med EU modellen; c) et større antal 

smittekilder i den danske model giver flere muligheder for specifik fordeling af tilfælde, hvilket formentlig 

resulterer i en mere korrekt kildetildeling; d) den danske model anvender officielle data om mængden af 

dansk producerede og importerede fødevarer til rådighed til forbrug, men tager i modsætning til EU-

modellen ikke hensyn til den mængde, der importeres specifikt fra hvert land, hvilket sandsynligvis 

resulterer i at bidrag fra lande med høje Salmonella forekomster underestimeres i den danske model; e) de 

sporadiske tilfælde i EU modellen blev multipliceret med en underrapporteringsfaktor, hvilket ændrer det 

relative forhold mellem sporadiske og udbrudsrelaterede tilfælde (Manuskript III).  Alt taget i betragtning, så 

rangerer de to modeller tre ud af de fire kilder i samme rækkefølge, og mens EU-modellen må anses for at 

være nyttig for lande, som ikke umiddelbart har den datadetaljeringsgrad som findes i Danmark, vil Danmark 

kunne drage større nytte af at anvende landespecifikke importdata frem for at anvende resultaterne fra EU-

modellen. 

Det sidste kapitel beskriver en alternativ metode til at estimere kilder til human salmonellose for 

Tjekkiet, Norge, Bulgarien og Rumænien, hvoraf de to sidstnævnte ikke var inkluderet i EU modellen pga. 

manglende data. Ved hjælp af clusteranalyser blev 28 lande grupperet efter nogle udvalgte variable, som 

karakteriserede landenes sociale og økonomiske status, den animalske husdyrproduktion samt kostvaner. 

Hvis data var tilgængelige, blev variable som afspejler forekomsten af Salmonella hos mennesker og husdyr 

også inddraget. Resultaterne af analyserne blev fremlagt et ekspertpanel med speciale indenfor 

fødevaresikkerhed, epidemiologi og risikomodellering. Disse blev bedt om at komme med estimater for den 

relative betydning af Salmonella smittekilder for de førnævnte lande, baseret på disses lighed med lande, for 
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hvilke resultater allerede forelå dvs. på baggrund af resultater fra EU-modellen. Eksperterne blev også bedt 

om at evaluere metodens egnethed og anvendeligheden af resultaterne. Eksperternes individuelle estimater 

blev evalueret dels ved en sammenligning med de tjekkiske resultater, som var til rådighed fra EU-modellen, 

men også i forhold til estimaternes ensartethed og usikkerhedsintervallerne mellem de forskellige estimater 

fra samme ekspert og imellem eksperterne i panelet. Evalueringen resulterede i, at svarene fra fem ud af de 

syv respondenter blev bibeholdt i de endelige analyser. Selv om panelet angav estimater for Tjekkiet som 

ikke var identiske med dem fra EU-modellen, var der enighed om rækkefølgen af betydningen af de 

animalske kilder, og der var enighed i panelet om samme rækkefølge. Det vurderes derfor, at metoden med 

nogle justeringer, kan være nyttig til at prioritere målrettet Salmonella kontrol i lande uden tilstrækkelige 

data til at gennemføre en mere datadrevet fremgangsmåde. På sigt kan metoden måske bruges til at 

identificere "surrogatlande," hvorfra prævalensdata kan "lånes" og anvendes i en matematisk model baseret 

på sammenligning af Salmonella typer. 

Dette PhD projekt har fremlagt resultater for et Europæisk smittekilderegnskab for Salmonella, samt 

evalueret de anvendte metoder og fremkommet med løsninger til, hvordan man kan håndtere manglende eller 

utilstrækkelige data i lignende undersøgelser. Projektet har også opnået resultater, som kan lægge grunden 

for fremtidige forsøg på at udarbejde Salmonella smittekilderegnskaber i et mere globalt perspektiv. 
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Resumo (Summary in Portuguese) 

 

Esta tese apresenta um modelo matemático usado para estimar a contribuição de quatro reservatórios 

animais da cadeia de produção de alimentos para o número de casos humanos de salmonelose na União 

Européia (UE) (Parte I). Além disso, uma abordagem alternativa baseada na opinião de peritos foi testada 

como ferramenta para extrapolar resultados para países com menor disponibilidade de dados, o que 

respresenta um primeiro passo para atribuição de Salmonella em nível mundial (Parte II).  

Casos de salmonelose em humanos foram atribuídos a viagens, surtos de doenças de transmissão 

alimentar e quatro reservatórios animais da cadeia de produção de alimentos (suínos, frangos de corte, perus 

e poedeiras) usando um modelo Bayesiano baseado em subtipagem microbiana em 24 países da UE. O 

método escolhido requer uma grande quantidade de dados, como prevalência de Salmonella em animais, 

casos notificados em humanos, possibilidade de infecção no exterior (daqui para frente referido como 

“histórico de viagem”), casos em humanos relacionados a surtos  e quantidade de carne ou ovos de cada 

reservatório animal que é produzida em um país e se encontra disponível para consumo nos outros. Por esse 

motivo, a preparação de um banco de dados com informações padronizadas para todos os países requereu um 

manuseio específico dos dados (Manuscrito I). 

Dados sobre casos esporádicos foram fornecidos pelo European Centre for Disease Prevention and 

Control (ECDC) através da European Food Safety Authority (EFSA), que também forneceu os dados de 

surtos. Prevalências de Salmonella em animais foram retiradas dos estudos de nível-base (BS) (suínos e 

perus) conduzidos pela EFSA entre 2004 e 2008 e completados onde necessário com dados da vigilgância 

padronizada da União Européia (frangos de corte e poedeiras) encontradas nos European Union Summary 

Report (EUSR), também publicados pela EFSA. O volume de alimento disponível para consumo foi 

calculado com base nos dados de comércio retirados do European Statistical Office (EUROSTAT), e 

completados com informações da  Association of Poultry Processors and Poultry Trade in the European 

Union Countries (AVEC). Limitações encontradas incluem a não-participação de alguns países em todos os 

BS, a não-notificação de casos individualmente, não-notificação específica de sorovares e indisponibilidade 

de registros de comércio no EUROSTAT. Para padronizar as informações disponíveis, todos os casos sem 

histórico de viagem foram considerados como infecção no próprio país; casos sem identificação apropriada 

até o nível de sorovar foram re-classificados de acordo com as proporções de sorovares existentes no banco 

ou em outros documentos de referência; informações de comércio não encontradas foram estimadas com 

base nos anos para os quais os dados estavam disponíveis, e a não-participação nos BS foi subtituída, quando 

possível, com dados de vigilância dos EUSR. Países em que a falta de dados foi considerada extrema a ponto 

de ameaçar os resultados do modelo foram excluídos. O banco resultante contém dados da Austria, Belgica, 

Chipre, República Tcheca, Dinamarca, Estônia, Finlândia, França, Alemanha, Grécia, Hungria, Irlanda, 

Itália, Letônia, Lituânia, Luxemburgo, Holanda, Polônia, Portugal, Eslováquia, Eslovênia, Espanha, Suécia e 

Reino Unido. Três países foram incluídos nas análises preliminares, mas foram retirados da lista final: a 

Bulgaria, que notificou 100% dos casos sem detalhamento de sorovares; e a Romênia, que só participou de 

um BS e não tinha dados suficientes publicados no EUSR (Manuscrito II).  

Um modelo Bayesiano que compara a presença de sorovares em humanos com a presença dos mesmos 

sorovares em animais da cadeia de produção de alimentos foi aplicado para estimar a contribuição de cada 

uma dessas categorias animais para o número de casos de salmonelose nos 24 países incluídos no banco 

descrito anteriormente (Manuscript II). Galinhas poedeiras (i.e., ovos) foram consideradas a fonte mais 

importante de salmonelose na União Européia, com 48.1% 42.4% (7,903,000 casos, Intervalo de 

Credibilidade de 95% (IC) 4,181,000 – 14,510,000) dos casos, seguidas de 31.1% attribuídos a suínos 

(5,800,000 casos, IC 95% 2,973,000 – 11,100,000). Perus e frangos de corte foram considerados fontes de 

menor importância, contribuindo com 12.6% (2,350,000 casos, IC 95% 736,300 – 6,194,000) e 3.8% 

(702,400 casos, IC 95% 325,500 – 1,590,000), respectivamente. Um total de 10.2% de todos os casos de 

salmonelose esteve relacionado a viagens, e 3.9% dos casos foram parte de surtos sem identificação do 

alimento implicado. S. Enteritidis foi o sorovar mais importante no estudo, tendo sido responsável por 95.9%  

dos casos atribuídos a poedeiras, 56.9% dos casos atribuídos a frangos de corte, 30.4% dos atribuídos a perus 
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e 28.3% dos casos atribuídos a suínos, nos quais o sorovar mais importante foi S. Typhimurium (63.1% dos 

casos atribuídos a essa fonte). Os resultados por país demonstraram que poedeiras são a fonte mais 

importante de salmonelose em 13 países (Áustria, República Tcheca, Estônia, Alemanha, Grécia, Hungria, 

Letônia, Lituânia, Luxemburgo, Eslovênia, Eslováquia, Espanha e Reino Unido), enquanto suínos foram o 

maior contribuinte em oito (Bélgica, Chipre, Finlândia, Franca, Irlanda, Itália, Polônia e Suécia), apesar de 

na Finlândia e Suécia a maior parte dos casos ter origem no exterior. Na Holanda, a proporção de casos 

atribuídos a poedeiras e suínos foi parecida. Na Dinamarca, o reservatório animal mais importante foram os 

perus, e frangos de corte foram a fonte mais importante em Portugal. Viagens ao exterior também foram uma 

fonte importante, apesar de menos que nos países citados anteriormente, na Irlanda, Reino Unido e 

Dinamarca. Os países que foram estimados como principais origens dos reservatórios de salmonelose na UE 

foram a Polônia, com 21.3% dos casos (3,563,710 casos, IC 95% 911,750 – 10,818,900), seguida de 18.4% 

da Espanha (3,081,090 casos, IC 95% 898,170 – 9,056,800) e 14.5% de Portugal (2,422,142 casos, IC 95% 

361,368 – 8,508,397) (Manuscrito II).   

As estratégias de controle de risco em salmonelose na Dinamarca incluem a aplicação periódica de um 

modelo de atribuição para estimar a contribuição dos principais animais e alimentos para casos humanos de 

salmonelose no país. Como parte do processo de validação do modelo europeu, seus resultados foram 

comparados com os do modelo dinamarquês (Manuscript III). O modelo dinamarquês tem os suínos como a 

principal fonte de salmonelose no periodo estudado (9.3%), seguido de ovos (7.5%) e frangos de corte 

(4.7%), enquanto o modelo europeu atribuiu 18.0% a suínos, 19.6%  a perus, 10.1% a poedeiras e 3.5% a 

frangos de corte. Casos relacionados a viagens ao exterior corresponderam a 30.6% no modelo dinamarquês 

e apenas 23.7%. Casos que não foram atribuídos a nenhuma fonte foram 16.7% no modelo dinanarquês e 

18.3% no europeu. As diferenças nos números observados são explicadas por diferenças na estrutura dos 

modelos e em seus pressupostos básicos:  a) casos sem histórico de viagem no modelo dinamarquês são 

redistribuídos de acordo com as proporções observadas nos casos com informação completa; no modelo 

europeu, como alguns países não possuíam informação nenhuma a respeito de viagens, foi necessário 

pressupôr que casos sem histórico de viagem não viajaram; b) o modelo dinamarquês usa dados subtipados 

até o nível de fagotipos, que permite a alocação mais específica de casos às fontes corretas, se comparado ao 

modelo; c) a maior variedade de alimentos e animais no modelo dinamarquês oferece mais opções para a 

atribuição específica de casos, de forma que menos casos são direcionados à categoria “fonte desconhecida”;  

d) o modelo dinamarquês usa dados oficiais nacionais sobre o volume de alimentos nacionais e importados 

disponíveis para consumo no país, não levando em consideração o volume importado de cada país de 

origem; isto resulta na contribuição específica de países com altas prevalências sendo “diluídas” no total 

importado, enquanto no modelo europeu a combinação da prevalência com o volume de importações tem 

mais impacto nos resultados e) os casos esporádicos atribuídos no modelo da UE foram multiplicados por 

um fator de correcão de subnotificacão, alterando o equilíbrio entre casos esporádicos e casos ligados a 

surtos (Manuscrito III). Tendo em mente todas as observações feitas, os dois modelos ordenam três das 

quarto fontes em ordem de prioridade semelhante e,  apesar de o modelo europeu ser considerado útil para 

países que não possuem o mesmo nível de detalhamento de dados de vigilância que a Dinamarca, este país 

ganharia mais adaptando o modelo atual para usar dados de comércio entre países que adotando o modelo 

europeu.  

O último capítulo apresenta uma abordagem alternativa para obter resultados de atribuição na 

Republica Tcheca, Bulgária, Noruega e Romênia. Usando técnicas de cluster analysis, 28 países foram 

agrupados de acordo com variáveis usadas para caracterizá-los do ponto de vista sócio-econômico, de 

produção animal, clima e hábitos de consumo de alimentos. Quando disponíveis, dados de Salmonella em 

humanos e animais também foram incluídos. O resultado das análises foi distribuído a um painel de 

especialistas em segurança alimentar, epidemiologia e modelagem de risco, e foi pedido ao painel que 

estimasse resultados de atribuição para os países citados anteriormente com base em suas semelhancas com 

outros países. Também foi pedido que o método fosse avaliado em termos de utilidade e aplicabilidade dos 

resultados, e as estimativas dos especialistas foram avaliadas através da comparação com os valores obtidos 

para a República Tcheca no modelo europeu. Essa avaliação resultou na permanência de cinco dos sete 

especialistas originais no painel. Apesar de os valores específicos obtidos por esse método serem diferentes 
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dos do modelo europeu, a ordem de prioridade entre os reservatórios animais foi a mesma. Portanto, é 

possível que, com adaptacões, esse método possa ser útil para ajudar a definir prioridades de ação no 

controle de Salmonella em países que não possuem dados suficientes para uma abordagem mais tradicional.  

O método também pode ser usado para definir “países substitutos”, dos quais os resultados dos métodos mais 

tradicionais possam ser copiados, dadas as semelhanças entre países.  

O estudo de doutorado aqui apresentado obteve resultados que estabelecem parte das fundações para 

estudos de atribuição de fonte em nível global, avaliando, ao mesmo tempo, os métodos testados e propondo 

soluções para lidar com dificuldades relacionadas à má qualidade potencial dos dados disponíveis para esses 

estudos.  
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2. OUTLINE 

 

This thesis is divided into two parts:  

Part I presents a microbial subtyping approach to attribute cases of human salmonellosis to animal 

reservoirs in 24 Member States of the European Union. The necessary data management to create a dataset 

with standardized information from the countries finally included in the model is also described. A 

comparison of Danish Salmonella source attribution estimates achieved by the developed EU model and a 

Danish model used routinely as part of the national risk management activities is presented to discuss the 

validity of both models. The results from Part I form the background for the methodology in Part II. 

Part II presents the pilot of a novel approach to use clustering techniques and expert elicitation to 

extrapolate estimates from the study described in Part I to European countries with insufficient Salmonella 

data. The thesis closes with a general discussion and conclusions. 
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3. INTRODUCTION 

Foodborne infections are widespread and a growing public health problem worldwide. Recent 

increases in international trade, migration and travel provide an opportunity for pathogens to spread at a 

much faster rate and to a much larger area than in previous decades (Greger, 2007; Tauxe et al., 2010). As an 

example, it is estimated that, in the United States, foodborne diseases caused by the 31 major known 

pathogens result in 9.4 million cases, 55,961 hospitalizations and 1,351 deaths each year (Scallan et al., 

2011a). In addition, unspecified foodborne agents (pathogens with insufficient information for agent-specific 

calculations, known agents not yet recognized as causing foodborne illness and chemicals or other 

substances present in food but with pathogenicity not yet proven) are estimated to cause 38.4 million cases 

per year, resulting in 71,878 hospitalizations and 1,686 deaths (Scallan et al., 2007b). Globally, although the 

true burden of foodborne diseases is currently unknown, it is estimated that food- or waterborne diarrheal 

diseases are responsible for 2.2 million deaths per year worldwide, 1.9 million of which are children (WHO, 

2007). 

Salmonella enterica is considered one of the leading causes of gastroenteritis and bacteremia in the 

world (Scallan et al., 2011a, Hendriksen et al., 2011), being estimated to cause 93.8 million human cases and 

155 thousand deaths every year (Majowicz et al., 2010). 

The genus Salmonella consists of only two species, namely Salmonella enterica and Salmonella 

bongori (WHOCC-Salm, 2007). Salmonella enterica is divided in six subspecies (S. enterica enterica, S. 

enterica salamae, S. enterica arizonae, S. enterica diarizonae, S. enterica houtenae and S. enterica indica) 

(Tindall et al., 2005, Haesebrouck et al., 2005), of which S. enterica enterica and S. enterica salamae are 

commonly found in warm-blooded animals, while the others are more frequent in cold-blooded animals and 

in the environment (WHOCC-Salm 2007).  

Although other sources are recognized (Baker et al., 2007; O’Reilly et al., 2007), transmission of 

Salmonella to humans occurs mainly through the ingestion of contaminated food (Acha and Szyfres, 2001; 

EFSA, 2011a). Implicated foods are frequently beef, pork, poultry, dairy products, eggs and fresh produce, 

and scientific evidence confirms the transmission of strains from the animal reservoir through the food chain 

and to the human population (Newell et al., 2010). 

Identifying which foods are more frequently implicated in the transmission of an illness is a crucial 

step on the prioritization of control activities (Kuchenmüller et al., 2009). This process is called source 

attribution, and it can be based on different approaches, such as analysis of outbreak data, analysis of 

sporadic cases, microbial subtyping, comparative exposure assessment, intervention studies and expert 

elicitations (Pires et al., 2009). Methods for source attribution are intended to provide tools for the setting of 

priorities in relation to human foodborne and zoonotic diseases, being a critical tool for decision-making 

aimed at reducing human infections faster and more effectively (Havelaar et al., 2007). 

In 2006, the World Health Organization (WHO) created the Foodborne Disease Epidemiology 

Reference Group (FERG) as part of a strategy to estimate the global burden of foodborne diseases. The 

group is organized in thematic task forces, one of which is focused on attributing illnesses to food sources 

(WHO, 2009). This is an ongoing process, which has not yet been accomplished, mainly because nationally 

representative prevalence data about foodborne pathogens in humans, animals and food items are not 

available in most parts of the world.  
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Countries which have a more favorable data situation have attempted to estimate the contribution of 

the major animal-food sources to human infections of foodborne pathogens. A part of these efforts have been 

directed towards Salmonella, like in Denmark (Hald et al., 2004; Pires and Hald, 2010), Sweden (Whalström 

et al., 2011), Japan (Toyofuku et al., 2011), New Zealand (Müllner et al., 2009) and the United States (Guo 

et al., 2011). A EU-wide source attribution approach based on outbreak data was also developed (Pires et al., 

2010); this model attributed disease at the EU region level and did not provide estimates at country level. 

Also due to model limitations, achieved results were found insufficient to inform risk management decisions 

(see limitations of the study in Pires et al., 2010). 

Since 2003, efforts have been made in the EU to standardize the reporting of pathogens and diseases in 

humans and animals
1
. Part of those efforts was the conduction of EU-wide studies to estimate the baseline 

prevalence of Salmonella in laying hens, slaughter pigs, turkeys and broilers in EU Member States, and the 

use of those data to set targets for reduction of Salmonella in those populations. More recent efforst include 

the harmonization of the monitoring of Salmonella in laying hens (in 2006), broilers and turkeys (not 

implemented until after the completion of this thesis). Those actions are expected to have an impact on the 

relative contribution of different food-animals to human salmonellosis in all individual MS, but until 2009, 

this information had not been assessed. This prompted the European Food Safety Authority (EFSA) to issue 

a procurement procedure, requiring the estimation of the relative contribution of different food and animal 

sources to Salmonella infections in humans in the EU and European regions (Question No EFSA-Q-2010-

00685), using data sources officially approved and validated by the EU. This thesis presents the methods and 

results of the PhD project developed in response to that requirement, under contract number 

CT/EFSA/Zoonoses/2010/02 signed between EFSA and the National Food Institute, Technical University of 

Denmark. 

3.1. Salmonella in humans 

The typical clinical signs and symptoms of non-typhoidal salmonellosis in humans are acute fever, 

abdominal pain, nausea and vomiting, after an incubation period of 6-72 hours. Most infections are self-

limiting, lasting about two to four days, and symptoms are often mild, with dehydration as the main serious 

feature. Extra-intestinal infection is not common, but when it happens, particularly in bloodstream infections, 

the disease can be life-threatening. A small percentage of convalescents can act as healthy carriers for weeks 

or months, and sometimes chronic sequelae, such as reactive arthritis, may follow recovery (Acha and 

Szyfres, 2001).  

 In the European Union (EU) in 2009, a total of human 109,844 cases were reported by 27 EU 

Member States (MS), most of which by serovars Enteritidis (52.3%), Typhimurium (23.3%) and Infantis 

(1.6%). Other serovars were present, but each one was detected in less than one percent of cases, adding up 

to 22.8%. Of the total cases reported, 108,614 were confirmed by laboratory, corresponding to a notification 

rate of 23.7 cases per 100,000 population, and showing a decrease when compared to previous years (EFSA, 

2011a) (Figure 1).  

                                                           
1
 OJ L 268, 3.10.1998, p. 1–7. Decision No 2119/98/EC of the European Parliament and of the Council of 24 September 1998 setting 

up a network for the epidemiological surveillance and control of communicable diseases in the Community. 
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Figure 1. Notification rates of human salmonellosis in 2005-2009 by 25 EU Member States (AT, BE, CY, 

CZ, DE, DK, EE, ES, FI, FR, GR, HU, IE, IT, LT, LU, LV, MT, NL, PL, PT, SE, SK, SI, UK). Source: The 

European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne 

Outbreaks in 2009 (EFSA, 2011a). 

One of the main obstacles for the evaluation of these numbers is the underreporting of cases, which 

can happen at all levels of the reporting pyramid, as described by Wheeler et al. (1999) (Figure 2). In the 

reporting pyramid, the real (and generally unknown) number of illnesses occurring in the population are 

represented at the base, and the number of cases reported in the surveillance system are represented at the 

top. The difference between the two totals is explained by 1) the percentage of cases which seek medical 

care; 2) the percentage of those which are asked to submit clinical specimens and actually provide them; 3) 

the percentage of specimens which are tested; 4) the sensitivity of the laboratory tests used; 5) the percentage 

of positive results which are reported and 6) the percentage of records in the reporting system which have 

complete and valid data. It is generally understood that the number of cases found at the tip of the pyramid is 

considerably smaller than the one found at its bottom. It is, therefore, accepted that the true burden of human 

salmonellosis (and other gastrointestinal infections) may be considerably larger than the reported incidence. 

Also, the level of underreporting varies strongly between countries, depending on differences in organization 

and effectiveness of local surveillance systems (de Jong and Ekdahl, 2006; ECDC, 2007).  

The percentage of cases lost between the steps of the pyramid can be assessed in a country, for 

example through population surveys, hospital surveys, review of clinical records and a survey or evaluation 

of the laboratories. Several attempts have been made in recent years to “correct” the values officially 

reported, for example in England (Wheeler et al., 1999), the United States (Voetsch et al., 2004) and the 

Netherlands (Havelaar et al., 2012a). Two studies have estimated underreporting factors for the European 

Union (de Jong and Ekdhal 2006; Havelaar et al.,2012b), based on the incidence of disease in Swedish 

travelers returning home from within-EU travel. A global-level study was also conducted by Majowicz et al. 

( 2010), using a combination of population-based studies, studies which calculated underreporting factors, 

disease notification, traveler return data and extrapolation.  
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Figure 2. Reporting pyramid showing the steps where cases present in the population are “lost” by the 

surveillance system. 

3.2. Sources of human salmonellosis 

It is generally recognized that subtypes of Salmonella can be host-adapted, host-specific or host-

ubiquitous, a concept that is based on epidemiological evidence (Kingsley and Bäumler, 2000). Contrary to 

what the name suggests, host-specific types are not found in only one species, but are only able to establish a 

stable population through direct contact in specific animal hosts, being still able to infect humans or other 

animals (Uzzau et al., 2000). When infecting other species, their pathogenicity is affected by their degree of 

host adaptation, generally causing a more severe clinical syndrome than in the original host population. S. 

Typhi and S. Paratyphi are adapted to man, where they cause severe systemic illness characterised by fever 

and abdominal symptoms (enteric/(para)typhoid fever) (Miller et al., 1995; Uzzau et al., 2000; Acha and 

Szyfres, 2001). These serovars are usually not pathogenic to animals and are not considered to have a 

zoonotic potential. 

As mentioned earlier in this thesis, subtypes of Salmonella enterica enterica are mostly found in 

warm-blooded animals, meaning that over 1,500 subtypes of Salmonella are potentially pathogenic for 

humans.  Non-typhoidal ubiquitous subtypes like S. Typhimurium affect humans and a wide range of 

animals, usually causing gastrointestinal infections of varying severity. There is also a group of serotypes 

that are highly adapted to an animal host, e.g. S. Cholerasuis in pigs, S. Dublin in cattle, S. Abortus-ovis in 

sheep and S. Gallinarum in poultry (Hald, 2011). These serovars only occasionally infect humans, where 

they may produce no, mild or serious disease (Acha and Szyfres, 2001; Mølbak et al., 2006). 

In animals, most infection are sub-clinical, allowing transmission between herds or flocks and to 

humans before detection. Infected bovines may succumb to fever, diarrhea and abortion. Within calf herds, 
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Salmonella may cause outbreaks of diarrhea with high mortality. Fever and diarrhea are less common in pigs 

than in cattle, sheep and horses; goats usually show no signs of infection, and poultry generally develops 

serious illness only when infected with specific strains like S. Gallinarum and S. Pollurum (Acha and 

Szyfres, 2001). Although zoonotic Salmonella types can occur in almost all food-producing animals, even 

host-ubiquitous types are often more strongly associated to a particular animal reservoir. Thus, recognizing 

the main hosts of specific subtypes is of utmost importance for the identification of contaminated food 

sources (Hald, 2001).  

It should be noted, though, that the potential of a food item as a transmission source depends not only 

on the infecting serovar, herd/flock prevalence or contamination at retail level, but also on the way it is 

traditionally prepared in the country of consumption. Food-preparation methods play an important part in 

human infection from contaminated food sources, as Salmonella optimally grows in temperatures around 37 

degrees Celsius, and can be inactivated by thoroughly cooking the food (Adams and Moss, 1995; Kovats et 

al., 2004).   

3.3. Source attribution methods and models 

Source attribution of human illnesses can be defined as “the partitioning of the human disease burden 

of one or more foodborne infections to specific sources, where the term source includes animal reservoirs 

and vehicles (e.g. food)” (Pires et al., 2009). Methods present different advantages and limitations, and the 

applicability of each one depends on the public health question being addressed, on the characteristics of the 

pathogen and on data availability. Depending on the method chosen, attribution can be conducted at the point 

of reservoir, meaning at the origin of the pathogen, or at the point of exposure, i.e. at the end of the 

transmission chain.  

A variety of data sources and analytic approaches can be used to attribute foodborne illnesses to food 

or animal sources (Batz et al., 2005; Pires et al., 2009), including: 

 Microbiologic approaches: microbial subtyping and comparative exposure assessment. 

 Epidemiologic approaches: analyses of case-control studies and analysis of outbreak data. 

 Intervention studies.  

 Expert elicitations. 

Microbial subtyping approaches attribute disease at the reservoir level, while comparative exposure 

assessment and epidemiological studies focus on illness at the point of consumption, as outbreaks and case-

control studies investigate the exposures common to all cases.  

Most available methods have been applied to attribute human salmonellosis to its sources. 

Comparative exposure assessments are used to determine the relative importance of the known transmission 

routes of a hazard, by estimating the human exposure in each step of each possible route. It has been used for 

Salmonella in Denmark (Pires, 2009). Salmonella source attribution studies using data from outbreaks have 

been conducted in Europe (Pires et al., 2010; Pires et al., 2011a), Latin America and the Caribbean (Pires et 

al., 2012), Japan (Pires et al., 2011b), Canada (Ravel et al., 2009) and New Zealand (King et al., 2011). A 

source attribution study using a global meta-analysis of case-control studies of sporadic infections was 

recently published by Domingues et al. (2012). Expert elicitations have also been applied to Salmonella 

(Hoffmann et al., 2007a), and can also be used when the data required for a data-driven statistic approach are 

highly uncertain or unavailable, or when there is a need to fill data gaps or combine conflicting results from 

existing studies or approaches (Batz et al., 2005). Additionally, expert elicitations are particularly useful to 
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estimate the proportion of human cases that are attributable to each of the main transmission pathways: food- 

or waterborne, environmental, direct contact or person-to-person transmission. This type of attribution is not 

possible to attain by the direct application of the other methods described, as in neither of these, it is possible 

to include all possible routes of transmission. The delineation of the major transmission pathways therefore 

depends on the experts’ critical analysis of the results of all relevant studies, in order to quantify the 

importance of each of the transmission pathways. 

3.3.1. The microbial subtyping approach 

Characterization of Salmonella subtypes beyond the subspecies level can be performed using 

phenotypic or genotypic approaches (Gebreyes et al., 2006). Phenotypic methods include serotyping, phage 

typing and characterization of antimicrobial resistance (AMR) profiles.  

Serotyping by slide agglutination is based on the immunologic reactivity and antigenic determinants 

present in the cell surface, such as antigen O (membrane), K (capsule) and H (flagellar) (Haesebrouck et al., 

2005). It is extensively used to categorize bacterial pathogens, and the serotyping scheme for the genus 

Salmonella is based on the Kauffman-White typing scheme (Gebreyes and Thakur, 2011). The serotyping of 

Salmonella generates a list of over 2,500 serovars, of which around 1,500 (60%) are subtypes of S. enterica 

enterica (WHOCC-Salm 2007). In some cases, subtyping is performed only based on the O-antigen, and is 

called serogrouping. Serotyping according to the Kauffmann-White scheme is the primary characterization 

method of Salmonella, being applied all over the world and harmonized to a degree that allows results to be 

compared between laboratories and countries (Baggesen et al., 2010). 

It is also possible to characterize Salmonella isolates based on their susceptibility to specific 

bacteriophage viruses (Gebreyes et al., 2006). The method is independent from serotyping, and in theory, 

any Salmonella could be phage typed, as long as a specific panel of bacteriophages is obtained. However, 

due to their importance in humans, traditionally Salmonella enterica enterica ser. Enteritidis and Salmonella 

enterica enterica ser. Typhimurium (normally abbreviated as “S. Enteritidis” and “S. Typhimurium”) are the 

ones phage typed, as a way to further and more specifically subtype isolates already serotyped. Given the 

specificity of phages to the target bacteria, this method provides a more discriminative characterization than 

serotyping, making it a better tool for detecting more specific relations between subtypes and hosts or food-

sources (Mølbak and Neimann, 2002), which is of utmost importance, for example, during outbreak 

investigations (Hendriksen, 2010; Baggesen et al., 2010).  

Antimicrobial resistance (AMR) profiling may be used to further subtype microorganisms based on 

their resistance to a panel of antimicrobials of different classes. In the last decades, it became a more 

common approach, as it also allows the identification of emergent drug-resistant strains (Gebreyes and 

Thakur, 2011). 

Variations of the microbial subtyping approach using serotyping, phage typing and/or antimicrobial 

susceptibility profiling have been used for Salmonella in Denmark (Hald et al. 2004; Pires and Hald, 2010) 

and the Netherlands (van Pelt et al., 1999; Valkenburgh et al., 2007). The model used in Denmark has also 

been adapted to attribute salmonellosis in Japan (Toyofuku et al., 2011), Sweden (Whalström et al., 2011), 

the United States (Guo et al., 2011) and New Zealand (Mullner et al., 2009). Both the Dutch and the Danish 

model compare the number of reported human cases caused by a subtype with the relative occurrence of that 

subtype in the animal-food sources; the Dutch model assumes that the impact of each source is equal within 

each subtype, and that a source with a high relative occurrence of a type will necessarily result in more cases, 

ignoring that certain food types are traditionally prepared in ways that allow more or less survival of a 
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pathogenic load. For instance, a low prevalence of S. Enteritidis in table eggs usually cause more cases of 

human salmonellosis than a higher prevalence in broilers, because table eggs are more traditionally 

consumed raw or only lightly cooked. This feature is considered in the Danish model, which is described in 

section 3.3.1.1. The models by Toyofuku et al. (2011), Whalström et al. (2011) and Guo et al. (2011) – a.k.a. 

the CDC model – are all direct applications or adaptations of the Danish model, as described in their 

methods. 

When it comes to the use of genotypic subtyping for source attribution, the Asymetric Island model 

has been used for Campylobacter in England (Wilson et al., 2008), New Zealand (Müllner et al., 2009) and 

Denmark (Boysen, 2012). Its use for Salmonella, particularly at EU-level, is still to be explored, since it uses 

Multil-Locus Sequence Typing (MLST) data, which are not available in most EU countries. Initiatives to use 

Multi-Loci VNTR Analysis (MLVA) data (which is based on the method as DNA-fingerprinting) for 

attribution purposes are ongoing (Pires and Hald, pers. comm.), but until the conclusion of this thesis, that 

had not yet been achieved. 

In the EU, the reporting of Salmonella phage types, AMR profiles or DNA-based information are not 

required by Decision No 2119/98/EC
2
 of the European Commission, and so the methods are only applied 

during outbreaks in most countries. 

3.3.1.1. The Danish source account model, a.k.a. the Hald model 

The DTU National Food Institute routinely applies a source attribution model to estimate the 

contribution of the major animal-food sources to human infections of Salmonella. The model was first 

implemented in 1995, and has since then evolved from being purely deterministic to becoming a stochastic 

model, built under a Bayesian framework (Hald et al., 2004). In 2008, a new methodological development 

was introduced (Pires and Hald, 2010), which enable the model to accommodate data from multiple years. 

This modification improved the robustness and accurateness of the results without compromising their 

comparability with estimates from previous years, and allows for the application of the model using data 

with less discriminatory power, e.g. with only serotyping as an epidemiological marker method (Pires and 

Hald, 2010). 

The model routinely used in Denmark, as it is applied now, includes three dimensions: the Salmonella 

subtype, the animal-food sources (including imported food) and the year. It attributes sporadic cases of 

human salmonellosis to the animal-food sources, to outbreaks and to international travel each year. It is 

assumed that all cases that had been travelling abroad one week prior to onset of symptoms are travel-

related. Because not all cases have travel information, human cases attributed to travel include cases that 

have reported to have travelled before onset of symptoms and estimated “extra-travelers”, which constitute a 

proportion of the cases with unknown travel history that is estimated to have travelled based on the 

distribution of travelers and non-travelers for each subtype. A proportion of cases cannot be associated with 

any known source, and is gathered in a category named “Unknown source”. This category includes cases 

caused by subtypes not found in any of the included sources or caused by isolates that were not subtyped. It 

may therefore include cases caused by sources not included in the model (e.g. game, seafood, etc). 

Human cases caused by a subtype are attributed to animal sources based on the relative occurrence 

(represented by the prevalence) of this subtype in the animal sources included in the model. Two parameters 

are included in the model to take into consideration the ability of a subtype to cause disease and the ability of 

                                                           
2 OJ L 268, 3.10.1998, p. 1–7. Decision No 2119/98/EC of the European Parliament and of the Council of 24 September 1998 setting 

up a network for the epidemiological surveillance and control of communicable diseases in the Community. 
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a source to convey the bacterial load to the human consumer. Those features enter the model as prior 

knowledge (flat priors), and this knowledge is updated by Bayesian inference (see 5.3.1) on the basis of the 

data available to inform the model: the number or reported cases caused by Salmonella subtypes and the 

prevalence of these subtypes in food/animal sources weighted by the amount of a food source available for 

consumption in the country.   
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4. HYPOTHESES AND OBJECTIVES 

The overall aim was to explore ways to conduct source attribution studies in a global perspective, 

starting with the EU, where the data required for such studies were more readily available. This generated the 

following hypotheses: 

 It is possible to develop an EU model based on the data available; 

 It is possible to extrapolate results of the EU moel to countries with insufficient data using non-

health indicators and expert elicitation; 

To test the two hypotheses, the following specific objectives were set for parts I and II of the thesis: 

Part I – The European Union model 

4.1.1. To evaluate the quality and usefulness of the data available and do the necessary data 

management to include the maximum number of countries and animal sources in the EU 

model (Manuscript I). 

4.1.2. To develop and run a Bayesian model based on microbial subtyping for attribution of human 

cases of salmonellosis in the EU (Manuscript II). 

4.1.3. To compare the estimates obtained for Denmark with the results obtained for the same time 

period in the Danish model routinely applied, and propose improvements to both models. 

(Manuscript III). 

 

Part II – An alternative approach for source attribution in countries with missing data 

4.2.1. To propose and evaluate an alternative approach for source attribution based on expert 

elicitation, using non-health indicators as information to estimate results for countries, where 

the data on Salmonella required for the Bayesian model are not available. 
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5. MATERIALS AND METHODS 

Given the characteristics of the described methods, the data potentially available and the original 

proposal of developing a microbial subtyping-based model for this thesis, an adaptation of the three-

dimensional Danish model was chosen as the best option for source attribution in the EU. 

5.1. Data sources, handling and selection (Manuscript I) 

5.1.1. The ideal dataset 

The ideal dataset for a European model should have uniformly collected information, so results are 

comparable between countries. Considering the data requirements for the Danish three-dimensional source 

attribution model (Pires and Hald, 2010):  

 number of reported salmonellosis cases in humans per year, with subtyping information (e.g. 

information on serovars, phage types of S. Typhimurium and S. Enteritidis and/or AMR 

profiles); 

 number of cases which had been travelling before onset of symptoms; 

 number of cases connected to outbreaks and, if available, the implicated food source; 

 Salmonella prevalence in food-animals,  broiler and layer flocks, pork, beef and imported 

foods, with subtyping information as for human data; 

 amount of food sources available for consumption in the country per year; 

It was proposed that the EU model should: 

 have the year substituted as a dimension by country of attribution; 

 take into consideration the country of origin of the foods being consumed in the country of 

attribution, by considering the amount of food items imported from different countries and 

the Salmonella prevalence in those food sources in those countries; 

These features imply that the “perfect” dataset for the EU model would include the following 

information for all countries included: 

 number of reported human salmonellosis cases, originating from a well-established 

surveillance system with national coverage in which cases are all confirmed by laboratory 

and subtyped to the furthest possible level; 

 information on whether the person reported as a case had been travelling abroad one week 

prior to symptoms onset; 

 number of cases connected to outbreaks and, if available, identified outbreak sources; 

 prevalence of Salmonella subtypes, using the same subtyping method(s) as for human cases, 

in the maximum number of relevant animal reservoirs of the food chain; 

 amount of an animal product available for consumption in each country; 

 trade data: amount of food sources imported and exported within EU countries. 

5.1.2. Data available in EU Member States 

Data for the model were provided by EFSA, including datasets that were originally maintained by 

other institutions. Exceptions are duly noted in the text. The availability of data for sporadic human cases, 
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outbreaks and animal-food sources among countries are presented in Table 1. A detailed description of all 

data available, including data on consumption and trade of food sources, follows.  

A list of 25 serovars was selected to be addressed, based on their occurrence and observed prevalence 

in humans and animals in the last years (EFSA, 2011a; EFSA, 2010a; EFSA, 2009a). The presence of those 

serovars in humans and the five animal sources in the countries studied is summarized in Table 2 of 

Manuscript I. For better visualization, only the 11 serovars most frequently found simultaneously in humans 

and animals are individually shown in the graphs and figures. Those are S. Enteritidis, S. Typhimurium, S. 

Kentucky, S. Virchow, S. Agona, S. Hadar, S. Derby, S. Newport and S. Stanley. S. Bovismorbificans was 

then included in the short list because of its emerging importance in humans in the last years (EFSA, 2010a, 

EFSA 2011b), totalizing 11 short-listed serovars.  

Table 1. Availability of data from the different datasets by country. 

 
(a) If data were missing from a specific source in a country, surrogate data sources used are indicated. 

(b) Bulgaria reported human cases, but no serovar information was available. 

(c) Obtained through direct contact with Member States. 

 

5.1.2.1. Salmonella in humans 

The effectiveness of a unified European surveillance system strongly depends on the quality of the 

national surveillance systems and the operational performance of the coordinating partners. Challenges to 

achieve such unification in an integrated and efficient way include differences in organization and 

effectiveness of existing national surveillance systems, which affects data comparability, as well as finding a 
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way to suitably disseminate results and improve overall data quality. In 2005, a strategy for infectious 

disease surveillance in Europe was developed, outlining the transition from the then project-based approach 

led by the Commission to a more coordinated, sustained approach managed by ECDC (ECDC, 2007).  

In order to improve uniformity of reporting from Member States to the EU level, case definitions were 

developed by the European Commission
3
 and put to use by MSs in 2003

4
, with a revised version being 

adopted in 2008
5
. Such definitions were constructed in a way that enables reporting in the greatest extent 

possible, taking into account local differences in level of sensitivity and specificity, according to the different 

goals of information collection. Case definitions are used by MS for reporting to the ECDC and implemented 

in their national reporting systems, allowing more comparability of surveillance data within the EU. 

These actions culminated in the creation of The European Surveillance System (TESSy), which is 

responsible for validation, cleaning, analysis and dissemination of data. All 27 EU MSs and the three EEA 

countries report their available data on 49 communicable diseases to the system. The list of diseases and the 

reporting steps are described in Decision No 2119/98/EC
6
. The EU-wide coverage, the cleaning and 

validation processes and the use of standardized case definitions makes TESSy the best available source for 

data on human diseases. Cases of salmonellosis are reported to TESSy and summarized in the European 

Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks 

(EUSR), published by the European Food Safety Authority (EFSA). According to the report (EFSA, 2011a), 

108,618 lab-confirmed cases of human salmonellosis were reported by 27 MSs in 2009. Although those are 

the official numbers reported, the total for the Netherlands and Spain are extrapolations calculated based on 

sentinel surveillance systems with national coverage of 64% and 25%, respectively. Also, in specific years, 

Bulgaria, Lithuania, Poland and Romania only reported aggregated data, instead of case-based information. 

In 2006, de Jong and Ekdahl estimated the risk of Swedish travelers being notified with salmonellosis 

when returning from 31 European countries, by comparing a Swedish dataset of travel-associated cases 

(within-Europe travel only) from 1997 to 2003 with a group of randomly selected Swedish residents with a 

history of recent travel to those same countries in the same period. This risk was then compared with official 

reporting data from such countries, and by using Norway as a reference value of 1, a set of country-specific 

multipliers were calculated to be used as correction factors for underreporting, representing the ratio between 

the true and reported cases, and thus allowing the calculation of more realistic incidence estimates (de Jong 

and Ekdahl, 2006). In 2012, Havelaar et al. (2012b) published an update of the underreporting factors (UF) 

by de Jong and Ekdahl; Swedish travelers’ data from 2005 to 2009 were used to calculate the risk of being 

reported after returning from the Netherlands, which was multiplied with the incidence rate from a Dutch 

population-based study. Salmonella incidences were than calculated by multiplying the incidence rates with 

the population of each country, and the new UFs (Table 2) were obtained as the ratio between the “true” 

calculated incidences and the ones officially reported. The country-specific total of reported cases in 2007 to 

2009 can be adjusted by applying those UFs, and the relative importance of each MS for the EU total can be 

                                                           
3 OJ L 86 03.04.2002 p. 44-62. Commission Decision of 19 March 2002 laying down case definitions for reporting communicable 

diseases to the Community network under Decision No 2119/98/EC of the European Parliament and of the Council.  
4 OJ L 184 23.07.2003 p.3 5-39. Commission Decision of 17 July 2003 amending Decision No 2119/98/EC of the European 

Parliament and of the Council and Decision 2000/96/EC as regards communicable diseases listed in those decisions and amending 

Decision 2002/253/EC as regards the case definitions for communicable diseases. 
5 OJ L 159, 18.6.2008, p. 46–90. Commission Decision of 28 April 2008 amending Decision 2002/253/EC laying down case 

definitions for reporting communicable diseases to the Community network under Decision No 2119/98/EC of the European 

Parliament and of the Council. 
6 OJ L 268, 3.10.1998, p. 1–7. Decision No 2119/98/EC of the European Parliament and of the Council of 24 September 1998 setting 

up a network for the epidemiological surveillance and control of communicable diseases in the Community. 
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better assessed. This does not affect the decreasing tendency observed for the EU as a whole, as the same 

factors will be applied to all years, maintaining the proportions among them. 

Table 2 shows the officially reported and the adjusted number of cases per country from 2007 to 2009, 

along with their relative contributions to the yearly EU totals and the UFs used for correction. The 

importance of the underreporting corrections is visible from the countries perspective, as much higher 

incidence rates can be calculated from the new totals, and from an European perspective when the 

contributions of each country to the total in the EU are compared. As an example, in 2009 Bulgaria appears 

in the official numbers as responsible for 1.1% of EU cases, which changes to 14.3% after the adjustment. 

This change could have a reflex on the attribution results, as the impact of the most important country-

specific sources in the EU may change when the number of cases due to those sources is multiplied.  
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Table 2. Human cases of salmonellosis reported before and after adjusting for underreporting, UFs (with 95% Credibility Intervals) and 

relative contributions to the EU total, 2007-2009. 

Country UF (95% CI)(a) 2009 2008 2007 

    
    

  Reported Adjusted Reported Adjusted Reported Adjusted 

              n % n % n % n % n % n % 

AT 11 ( 1.6 , 33.6 ) 2,775 2.6 30,525 0.5 2,312 1.7 25,432 0.3 3,386 2.2 37,246 0.5 

BE 3.5 ( 0.3 , 12.5 ) 3,113 2.9 10,896 0.2 3,831 2.8 13,409 0.2 3,915 2.5 13,703 0.2 

BG 718.5 ( 111.7 , 2140.5 ) 1,247 1.1 895,970 14.3 1,516 1.1 1,089,246 14.3 1,136 0.7 816,216 10.3 

CY 173.2 ( 26.8 , 523.8 ) 134 0.1 23,209 0.4 169 0.1 29,271 0.4 158 0.1 27,366 0.3 

CZ 28.9 ( 4.3 , 86.0 ) 10,480 9.6 302,872 4.8 10,707 8.0 309,432 4.1 17,655 11.5 510,230 6.4 

DK 4.4 ( 0.7 , 13.1 ) 2,130 2.0 9,372 0.2 3,669 2.7 16,144 0.2 1,648 1.1 7,251 0.1 

EE 16.9 ( 2.4 , 51.8 ) 261 0.2 4,411 0.1 647 0.5 10,934 0.1 428 0.3 7,233 0.1 

FI 0.4 ( 0.0 , 1.2 ) 2,329 2.1 932 0.0 3,126 2.3 1,250 0.0 2,738 1.8 1,095 0.0 

FR 26.9 ( 4.0 , 82.0 ) 7,153 6.6 192,416 3.1 7,186 5.3 193,303 2.5 5,313 3.5 142,920 1.8 

DE 9.8 ( 1.5 , 29.3 ) 31,395 28.9 307,671 4.9 42,885 31.9 420,273 5.5 55,399 36.0 542,910 6.8 

GR 1228.5 ( 188.5 , 3668.2 ) 403 0.4 495,086 7.9 792 0.6 972,972 12.8 706 0.5 867,321 10.9 

HU 66.8 ( 10.2 , 199.1 ) 5,873 5.4 392,316 6.3 6,637 4.9 443,352 5.8 6,578 4.3 439,410 5.5 

IE 5.4 ( 0.0 , 27.2 ) 335 0.3 1,809 0.0 447 0.3 2,414 0.0 440 0.3 2,376 0.0 

IT 71.7 ( 10.7 , 214.0 ) 4,156 3.8 297,985 4.8 6,662 5.0 477,665 6.3 6,731 4.4 482,613 6.1 

LV 43.3 ( 6.6 , 134.9 ) 798 0.7 34,553 0.6 1,229 0.9 53,216 0.7 619 0.4 26,803 0.3 

LT 59.1 ( 8.7 , 182.1 ) 2,063 1.9 121,923 2.0 3,308 2.5 195,503 2.6 2,270 1.5 134,157 1.7 

LU 4.5 ( 0.0 , 21.4 ) 162 0.1 729 0.0 153 0.1 689 0.0 163 0.1 734 0.0 

NL 26.3 ( 3.6 , 84.8 ) 1,205 1.1 31,692 0.5 1,627 1.2 42,790 0.6 1,224 0.8 32,191 0.4 

PL 114.1 ( 17.2 , 338.2 ) 8,521 7.8 972,246 15.6 9,148 6.8 1,043,787 13.7 11,155 7.3 1,272,786 16.0 

PT 2082.9 ( 318.3 , 6266.9 ) 220 0.2 458,238 7.3 332 0.2 691,523 9.1 438 0.3 912,310 11.5 

RO 349.9 ( 48.0 , 1127.8 ) 1,105 1.0 386,640 6.2 624 0.5 218,338 2.9 620 0.4 216,938 2.7 

SK 53.2 ( 7.6 , 165.4 ) 4,182 3.9 222,482 3.6 6,849 5.1 364,367 4.8 8,367 5.4 445,124 5.6 

SE 40.3 ( 4.9 , 133.2 ) 616 0.6 24,825 0.4 1,033 0.8 41,630 0.5 1,336 0.9 53,841 0.7 

ES 214.2 ( 32.7 , 638.9 ) 4,304 4.0 921,917 14.8 3,833 2.8 821,029 10.8 3,842 2.5 822,956 10.4 

SE 0.5 ( 0.1 , 1.6 ) 3,054 2.8 1,527 0.0 4,185 3.1 2,093 0.0 3,930 2.6 1,965 0.0 

UK 7.3 ( 1.1 , 22.6 ) 10,479 9.6 76,497 1.2 11,511 8.6 84,030 1.1 13,557 8.8 98,966 1.2 

EU-27 57.5 ( 8.8 , 171.4 ) 108,618 100 6,245,535 100 134,579 100.0 7,738,293 100 153,837 100.0 8,845,628 100 

(a) Havelaaer at al., 2012. (b) EFSA 2012a 
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5.1.2.1.1. Human data selection and handling 

Data on the number and serovar distribution of human cases reported to TESSy from 2007 to 2009, as  

provided by ECDC through EFSA, were extracted on 6
th
 of July 2010. The total number of reported cases 

includes sporadic, travel-related and outbreak-related infections.  

Travel data 

Travel information was reported as “imported”, “not-imported” or “unknown location of origin”, and 

the amount of information actually provided varied in frequency and quality. The proportion of travelers 

varied greatly among MSs, and for some countries, such as Sweden and Finland, travel-related infections 

were the majority of all salmonellosis cases, while in France, Romania and Slovenia, 100% of cases had 

unknown travel information. Full travel information was provided by Austria, Belgium, the Czech Republic, 

Estonia, Spain, Hungary, the Netherlands and Slovakia (Table 4).  

Outbreak data 

For outbreaks of foodborne salmonellosis, the same datasets used for the EUSRs 2007-2009 were 

provided by EFSA. For data management and modeling purposes, it was assumed that countries which 

reported sporadic cases but no outbreak cases did not have any foodborne Salmonella outbreaks in the 

period.  

Dealing with missing information 

MSs for which the level of serovar detailing was insufficient for source attribution were requested to 

provide additional data, if available. Such national datasets with more detailed serovar information were 

provided by Poland and Portugal.  

From the TESSy data, out of 392,485 cases reported in the EU, 35,643 (9.1%) had incomplete or 

missing serovar information. This rate varied within countries, from zero in Portugal to 84% in Romania. 

Types of incompleteness detected varied as to how far the identification reached (Figure 3), and can be 

summarized as:  

a) classification up to genus or species level, such as Salmonella spp, or Salmonella enterica (0.02% 

of EU cases);  

b) classification up to subspecies level, such as Salmonella enterica enterica or Salmonella enterica 

Subspecies I (0.2%);  

c) classification using groups based on the O-antigen both by the old nomenclature (groups B, C1-C2 

or E4) or the new one (serogroups O:4, O:7 or O:33) (2.3%);  

d) aggregated data, where the main serovars were specififed, and the remaining were grouped as 

“Others” (3.9%); 

e) cases where the serovar field was simply blank or filled with “unknown” (2.7%). 
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Figure 3. Observed “levels” of serovar identificationfound in human and animal datasets. Red boxes show 

situations which required serovar reassignment. 

Reported human isolates that were not classified up to serovar level or data reported in aggregated 

form were reassigned to specific serovars according to proportions observed in previous studies, in the same 

dataset or in other references, depending on the availability of data in each case. So, ”Salmonella spp.”, 

“Salmonella spp., unspecified”, “Salmonella untyped”, “Salmonella not typed”, “Salmonella enterica 

enterica” and “Salmonella Subsp. I” were reassigned to all serovars observed in the country. (e.g.: If S. 

Enteritidis accounted for 60% of all serotyped isolates from human cases in a country, and 10 isolates in the 

same country received one of the denominations mentioned, six of them were reassigned to S. Enteritidis, 

and so on for other observed serovars). Isolates identified up to subspecies level should likewise be 

reassigned to all serovars in the country, but with proportions calculated using only isolates of S. enterica 

enterica as total.  

Isolates classified as serogroups (e.g. C or D) or subgroups (e.g. C1 or D1) were distributed among 

serovars pertaining to those groups, in accordance with the Kauffman-White-Le Minor Scheme 9
th
 edition 

(WHOCC-Salm, 2007) (e.g., if S. Typhimurium accounted for 40% of all serotyped human isolates in the 

country, but for 80% of isolates from serovars belonging to Group B, and 10 isolates were identified as 

“Salmonella Group B”, eight of those were reassigned to S. Typhimurium, and so on for other serovars of the 

same group).  

Isolates classified as “Others”, “Other” or “Other serovars” were assumed to belong to serovars not 

described in the current dataset, but nonetheless present in the country. In this case, the main reference 

dataset used to obtain the proportions for the reassignment was the WHO GFN CDB (http://thor.dfvf.dk/gss), 

which contains the 15 most commonly identified Salmonella serovars among human and non-human sources 

in 84 countries (e.g.: suppose that in the original TESSy data, a country reported 30 isolates: 10 S. 

Enteritidis, 10 S. Typhimurium and 10 “Others”. The GFN CDB showed 80% S. Enteritids, 10% S. 

http://thor.dfvf.dk/gss
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Typhimurium, 7% S. Infantis and 3% S. Hadar for this country, so, according to this reference, S. Infantis 

and S. Hadar correspond to 70% and 30% of the non-described serovars. The 10 records were then 

redistributed as seven S. Infantis and three S. Hadar, as it was assumed that no S. Typhimurium or S. 

Enteritidis isolates were included in the group of “others”).  

One of the defining antigenic characteristics of S. Typhimurium is that it possesses two phases of H-

antigens: “i” and “1,2”, which is why the antigenic formula for this serovar is written as “1,4,[5],12:i:1,2” 

(WHOCC-Salm 2007). However, variants that lack either the first or the second phase H antigen have been 

described, and reported by some countries as “1,4,[5],12:i:-“ or “1,4,[5],12:-:1,2”. Those variants are referred 

to as “S. Typhimurium-like strains” or, in the cases cited, “1,4,[5],12:i:-“, “Monophasic S. Typhimurium”. 

For our purposes, isolates identified by those formulas in the datasets were reassigned to S. Typhimurium, 

which is supported by an EFSA BIOHAZ Panel assessment (EFSA, 2010b), as not all countries made that 

differentiation, and it is assumed that those variants were already reported as S. Typhimurium by some of 

them. The aphasic antigenic formula or “1,4,[5],12:-:-” was not reassigned, as it could belong to several 

serovars in group O:4. 

Table 3 shows the number and percentage of total reported and reassigned records by type of 

inconsistency. Total reported cases may differ from totals reported in the EUSR, as the datasets were 

extracted in different dates. The totals shown, however, have been validated and accepted by the MSs for 

publication in Pires et al. (2012). 

Travel information was often found incomplete. All records with missing or unknown travel 

information from countries which presented serovar detailing of sporadic cases were considered domestically 

acquired in the reporting country. In previous models, such as the Danish source account model, cases with 

unknown or blank travel history were reassigned to travel or domestic cases, based on the proportions among 

those two categories. In this dataset, several countries reported 100% of cases without information, and so it 

was not possible to proportionally reassign them. The assumption of non-travel in case of no information was 

kept for countries which had some travel history, to keep coherence in the method across all countries. 

Furthermore, it was considered that assuming all cases without travel information were travel-related would 

be a less sustainable assumption than that they were all domestic. The number of cases with missing travel 

information and the final number included in each country are shown in Table 4.  

Outbreak-related cases for which a serovar was not fully identified were reassigned using the 

proportions observed in the same dataset, as some serovars may be more prone to generate outbreaks than 

others, and thus the proportions observed in reported sporadic cases may not apply. Bulgaria, Cyprus, 

Greece, Italy, Luxembourg, Malta and the United Kingdom did not report any cases. As all of those 

countries, except for Bulgaria, had properly reported sporadic cases during the three years under study, it was 

assumed that they had no outbreak cases to be reported in the period. France needed to have nearly 47% of 

outbreak cases reassigned, as the isolates were reported as “Salmonella spp.”, the same happening with 39% 

of isolates in Latvia. The number and percentage of reassigned outbreak records are shown in Table 5. 
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Table 3. Number and percentage of reassigned records in humans. 

Country Incomplete identification 
Aggregated 

data
(d)

 
Unknown

(e)
 Total 

 
Species/genus

(a)
 Subspecies

(b)
 Serogroup

(c)
 

    
Reported Reassigned 

 
n % n % n % n % n % 

 
n % 

AT 
  

2 0.02 132 1.56 287 3.38 362 4.27 8,487 783 9.23 

BE 
      

172 1.55 
  

11,066 172 1.55 

BG - - - - - - - - - - 3,899 - - 

CY 2 0.42 
  

9 1.91 
  

101 21.44 471 112 23.78 

CZ 
        

586 1.51 38,842 586 1.51 

DE 
  

462 0.36 8,057 6.33 5,782 4.54 1,628 1.28 127,330 15,929 12.51 

DK 
  

2 0.03 3 0.04 25 0.33 342 4.56 7,497 372 4.96 

EE 
    

25 1.86 28 2.09 
  

1,341 53 3.95 

ES 
      

2,504 20.81 2,091 17.38 12,033 4,595 38.19 

FI 19 0.23 3 0.04 23 0.28 6 0.07 22 0.27 8,228 73 0.89 

FR 
      

2,185 10.75 
  

20,319 2,185 10.75 

GR 
    

104 5.40 3 0.16 1,309 67.93 1,927 1,416 73.48 

HU 
  

57 0.30 191 1.00 908 4.76 2 0.01 19,091 1,158 6.07 

IE 1 0.08 
    

11 0.87 68 5.38 1,264 83 6.57 

IT 25 0.24 
  

6 0.06 
  

1,080 10.58 10,205 1,111 10.89 

LT 
    

56 0.73 156 2.04 191 2.50 7,643 403 5.27 

LU 
        

63 13.15 479 63 13.15 

LV 
      

53 1.99 608 22.81 2,665 661 24.80 

MT 20 5.39 
      

40 10.78 371 60 16.17 

NL 
  

210 5.04 
  

84 2.02 
  

4,168 294 7.05 

PL 
      

1204 3.89 
  

30,963 1,204 3.89 

PT 
          

1,513 0 0.00 

RO 
      

1,218 51.81 766 32.58 2,351 1,984 84.39 

SE 
  

68 0.60 
  

411 3.65 307 2.73 11,265 786 6.98 

SI 
    

63 2.10 
    

3,002 63 2.10 

SK 3 0.02 
  

154 0.79 84 0.43 87 0.45 19,399 328 1.69 

UK 7 0.02 
  

149 0.41 4 0.01 1,009 2.75 36,666 1,169 3.19 

EU total 77 0.02 804 0.20 8,975 2.29 15,125 3.85 10,662 2.72 392,485 35,643 9.08 

CH - - - - - - - - - - - - - 

NO 
      

21 0.44 10 0.21 4825 31 0.64 

Total 77 0.02 804 0.20 8,975 2.26 15,146 3.81 10,672 2.69 397,310 35,674 8.98 
(a) Salmonella spp, Salmonella enterica, Salmonella not typed, Salmonella untyped  

(b) Salmonella enterica enterica, Subspecies I 

(c) B, C, D, E, D1, C1, C2-C3, D1, E1 

(d) ”Others”, ”Other serovars”, ”Unknown” 
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Table 4. Number of cases reported in the original datasets as travel-related, domestic or unknown and the 

total used in the model, assuming that any case not specifically mentioned as travel-related was domestic. 

Country Reported Total used 

Travel Domestic Unknown Travel Domestic 

AT 988 7,499 0 988 7,499 

BE 0 11,066 0 0 11,066 

BG - - - - - 

CY 18 428 25 18 453 

CZ 657 38,185 0 657 38,185 

DE 6,683 114,362 6,285 6,683 120,647 

DK 1,366 2645 3,486 1,366 6,131 

EE 95 1246 0 95 1,246 

ES 0 12,033 0 0 12,033 

FI 6,845 1059 324 6,845 1,383 

FR 0 0 20,319 0 20,319 

GR 45 1763 119 45 1,882 

HU 29 19,062 0 29 19,062 

IE 384 343 537 384 880 

IT 132 692 9,381 132 10,073 

LT 21 0 7,622 21 7,622 

LU 46 431 2 46 433 

LV 32 1,817 816 32 2,633 

MT 4 365 2 4 367 

NL 497 3,671 0 497 3,671 

PL 16 0 30,947 16 30,947 

PT 5 0 1,508 5 1,508 

RO 0 0 2,351 0 2,351 

SE 8,752 2,207 306 8,752 2,513 

SI 0 0 3,002 0 3,002 

SK 146 19,253 0 146 19,253 

UK 8,921 8,084 19,661 8,921 27,745 

EU total 35,682 246,211 106,693 35,682 356,803 
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Table 5. Number and percentage of reassigned records in foodborne Salmonella outbreaks. 

Country Reported 

Incomplete identification Total 

Species/genus
(a)

 Serogroup
(b)

 Reported Reassigned 

n % n % 
 

n % 

AT Yes 
    

421 0 0.00 

BE Yes 
    

91 0 0.00 

BG No 
    

- - - 

CY No 
    

0 0 0.00 

CZ Yes 
    

337 0 0.00 

DE Yes 13 0.55 
  

2,383 13 0.55 

DK Yes 
    

2,224 0 0.00 

EE Yes 
    

157 0 0.00 

ES Yes 
    

469 0 0.00 

FI Yes 
    

189 0 0.00 

FR Yes 1218 46.68 
  

2,609 1,218 46.68 

GR No 
    

0 0 0.00 

HU Yes 86 4.48 
  

1,921 86 4.48 

IE Yes 
    

67 0 0.00 

IT No 
    

0 0 0.00 

LT Yes 
    

371 0 0.00 

LU No 
    

0 0 0.00 

LV Yes 201 39.26 
  

512 201 39.26 

MT No 
    

0 0 0.00 

NL Yes 12 1.71 26 3.71 700 38 5.43 

PL Yes 
  

29 0.55 5,310 29 0.55 

PT Yes 
    

90 0 0.00 

RO Yes 26 5.95 
  

437 26 5.95 

SE Yes 8 2.94 
  

272 8 2.94 

SI Yes 
    

692 0 0.00 

SK Yes 
    

583 0 0.00 

UK No 
    

0 0 0.00 

EU total - 1,564 7.89 55 0.28 19,835 1,619 8.16 

CH Yes 
    

6 0 0.00 

NO Yes 
    

95 0 0.00 

Total - 1,564 7.85 55 0.28 19,936 1,619 8.12 
(a) Salmonella enterica enterica, Subspecies I 

(b) B, C, D, E, D1, C1, C2-C3, D1, E1 
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Serovar information 

S. Enteritidis and S. Typhimurium are the serovars most frequently observed in humans in Europe 

(EFSA, 2011a). Table 6 shows that the accompanying list of serovars may vary from year to year (EFSA, 

2012a; EFSA, 2010a), depending on the occurrence of outbreaks or changes in the surveillance and 

monitoring of food and animal sources. However, a smaller list has been constantly observed in the last five 

years, besides S. Enteritidis and S. Typhimurium, namely S. Infantis, S. Newport, S. Kentucky, S. Virchow, 

S. Derby and S. Agona. The decreasing trend in Salmonella cases has a visible reflection in the proportion of 

cases due to S. Enteritidis; as most of the control measures started at EU-level during the decade of 2000 

have been applied to eggs and layers
7
, there are proportionally fewer cases of S. Enteritidis every year, 

resulting in a relative increase on the reported proportions of other serovars (Table 6).  

The most common serovars observed in outbreaks were S. Enteritidis and S. Typhimurium. As 

expected, outbreaks may happen associated with serovars not normally found in the country. That is 

particularly true in countries with a small number of sporadic cases and a good level of control of Salmonella 

in domestic products, which is exemplified in Figure 4 when comparing the serovar profile of sporadic and 

outbreak cases in Finland, Sweden and Norway. 

As phage type reporting is not mandatory by EU regulations, this information is not complete or 

harmonized, being only available for 62.0% of isolates from the United Kingdom, 61.9% from Denmark and 

26.6% from Austria. The remaining MSs phage typed between zero and 15% of total reported isolates. Thus, 

phage type information in humans was considered not useful, as the limited availability of data renders this 

subtyping level impossible to use in the model. 

 

Table 6. Distribution of salmonellosis cases in humans (%) in the eleven selected serovars (TESSy), 2007-

2009. 

Serovar 2009
(a)

 2008
(b)

 2007
(b)

 

S. Enteritidis 52.3 58.0 64.5 

S. Typhimurium 23.3 21.9 16.5 

S. Infantis 1.6 1.1 1.0 

S. Newport 0.7 0.7 0.6 

S. Kentucky 0.5 0.4 0.3 

S. Virchow 0.7 0.7 0.8 

S. Derby 0.7 0.5 0.4 

S. Agona - 0.5 0.3 

S. Hadar 0.5 - - 

S. Bovismorbificans 0.4 0.4 - 

S. Stanley - 0.4 0.5 

Other
(dc)

 18.8 15.3 14.7 

(a) EFSA 2012a; (b) EFSA 2010a; (c) For each year, this category includes serovars not among the top-10, even if they are present in 

other years  

                                                           
7
 OJ L 325, 12.12.2003, p. 1. Regulation as last amended by Commission Regulation (EC) No 1237/2007 (OJ L 208, 24.10.2007, p. 5) 
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Figure 4. Relative proportions of the most frequent serovars in total reported (R) and outbreak (O) cases in humans in the EU and Norway, 2007-2009. 

The totals for each country in the datasets are shown at the top of the bar. 
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5.1.2.2. Salmonella in animal reservoirs of the food chain 

The European Parliament Regulation 2160/2003/EC
8
 on the control of Salmonella and other specified 

foodborne zoonotic agents has as main objective the reduction of Salmonella in animal populations at farm 

level. In order to provide the scientific basis for setting prevalence targets in commercial and breeding farms, 

EU-wide studies on the baseline prevalence of Salmonella were conducted focusing on laying hens (2004-

2005), broiler flocks (2005-2006), slaughter pigs (2006-2007), fattening and breeding turkeys (2006-2007), 

broiler batches at slaughter (carcasses) (2008) and breeder pigs (2008). The studies took place during a four-

year period and varied in MS participation due to the addition of new members to the EU in 2004 and 2007 

and the occasional participation of non-MS, such as Norway and Switzerland. However, they still constitute 

the most uniformly collected and analyzed data on Salmonella at the EU level, thus allowing valid 

comparisons among MSs. No harmonized data from Salmonella in cattle or other sources were available. 

Besides supervising the Baseline Studies (BS), EFSA is responsible for examining the data on 

zoonoses, antimicrobial resistance and foodborne outbreaks collected from MSs in accordance with Directive 

2003/99/EC
9
 and publishing those results annually in the EUSR (EFSA, 2007a). Data on the occurrence of 

zoonotic agents in animals, foodstuffs and animal feed are reported directly by MSs to EFSA, but not all 

member states report all categories, and serovar information is frequently reported in aggregated form 

(EFSA, 2012a). The quality and comparability of the data have been improved in recent years, since, as 

targets are being set for the reduction of certain Salmonella serovars in different poultry populations
10

, the 

monitoring of layers (EFSA, 2009b), broilers (EFSA, 2011b) and, more recently, turkeys (EFSA, 2012b) 

have been harmonized at EU level. However, this harmonization occurred after the period comprised by this 

thesis, with the exception of the monitoring of layers, and so at that moment, the most uniform data source 

for Salmonella in the other sources in the EU were the EFSA BS.  

5.1.2.2.1. Animal data selection and handling 

Data from the EU BS on the prevalence of Salmonella in broiler carcasses (EFSA, 2010c), slaughter 

pigs (EFSA, 2008a) and fattening turkeys (EFSA, 2008b) were used. These datasets were considered the 

most representative of the given reservoir, since no harmonized EU monitoring in pigs and turkeys is 

currently in place, and the broiler carcass study was considered to provide sufficiently recent data with a 

better detailing of the serovar distribution, when compared to the existing EU monitoring data.  

In order to use the most recent data possible, the laying hens BS (EFSA, 2007c) was not used. The 

study was conducted between 2004 and 2005, and it is expected that the implementation of the Commission 

Regulation (EC) No 1168/2006
11

 for harmonizing the surveillance of laying hens flocks of Gallus gallus in 

the EU has resulted in significant changes in the Salmonella serovar prevalences in this reservoir in many 

MSs. Instead, data for laying hens were obtained from the EUSR 2008 (EFSA, 2010a), which was the first 

year of EU-harmonised reporting for this reservoir. Selection of data by country was performed according to 

the recommendations found in EFSA (2010d). Cattle data were retrieved from the EUSR 2007, 2008 and 

2009 (EFSA, 2009a; EFSA, 2010a; EFSA, 2011a), with 2009 data being preferred to the other years.  

                                                           
8 EUT L 325 af 12.12.2003, s. 1–15. 
9 OJ L 325, 12.12.2003, p. 31–40, amending Council Decision 90/424/EEC and repealing Council Directive 92/117/EEC 
10 OJ L 325, 12.12.2003, p. 1. Regulation as last amended by Commission Regulation (EC) No 1237/2007 (OJ L 208, 24.10.2007, p. 

5) 
11 OJ L 211, 1.8.2006, p. 4–8, implementing Regulation (EC) No 2160/2003 and amending Regulation (EC) No 1003/2005. 
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The epidemiological unit used for data description varied with the study, being carcasses, flocks, herds 

or individual samples, depending on the data used. Study design, sampling schemes, sample units and data 

collection methods can be found in the respective reports (EFSA, 2007b; EFSA, 2008a; EFSA, 2008b; 

EFSA, 2010c). Prevalence of Salmonella serovars in the different food-animal sources were calculated to 

describe the available data by dividing the number of positive units (samples or herds/flocks) by the number 

of tested units and multiplying the result by one hundred. The values obtained may differ from the original 

prevalences in the BS; this happened because those were calculated as EU-weighted prevalences, but only 

for the main serovars, and serovar-specific prevalences are needed for the modeling. However, as cross-

country prevalence comparisons were not intended here, and given the coverage achieved by the sampling in 

the studies, the non-weighted values are valid as local prevalences for each country. To estimate relative 

frequencies, the numerator was the number of units positive for a specific serovar and the denominator was 

the number of total positive units. 

Data were available from 28 countries in different combinations of animal data sources. Highest 

positivity at EU level was observed for turkeys (20.7%), followed by pigs (13.9%), broilers (13.1%), laying 

hens (5.9%) and cattle (4.5%) (Table 7). Given the non-uniformity of the data collection for cattle, 

interpretation of these estimates should be made with care. Belgium and the United Kingdom only reported 

positive samples for cattle, resulting in 100% positivity. Small samples were also observed for broilers in 

Luxembourg, laying hens in Lithuania and Luxembourg, and turkeys in Estonia, Luxembourg and Latvia 

(Table 16). These small samples showed a very low or, in most cases, zero positivity, but care should be 

taken when looking at sample sizes that could be representative of a small national production, but which 

could also be an imprecise reflection of the animal population in those countries.  

Dealing with missing information 

Greece did not take part in the 2008 broiler carcasses BS, so serovar information in this country was 

supplied with data from the broiler flocks BS, conducted between 2005 and 2006 (EFSA, 2007b). For 

slaughter pigs, the results of the lymph node sampling were available for most MSs, except for Malta and 

Romania (EFSA, 2008a). BS data from fattening turkeys were used, with the exception of Estonia, Latvia, 

Luxembourg and Romania, which were not part of the study. Consequently, data on Salmonella serovars in 

turkeys from these countries were provided by EUSR data from 2006 and 2008 (EFSA, 2007a; EFSA, 

2010a), except for Romania, from where no data were available. 

In the laying hens data, in addition to units with non-identified or partially identified serovars, many 

countries only reported a reduced list of serovars and a group of “Others”. Sometimes this reduced list would 

comprise only S. Enteritidis and S. Typhimurium, as those are the two serovars for which specific reporting 

is mandatory by Directive 2003/99/EC. For that reason, the proportions used for re-allocation of units were 

the ones found in the EFSA Laying Hens Baseline Study (EFSA, 2007c). For BS data, no reference for 

reassigning of serogroups or incomplete serovar identification was available, so units were redistributed 

according to the proportions found among serovars in the same dataset. 

For cattle, no data from Cyprus or Malta were identified, and serovar information for France was 

supplemented with data from David (2009). 

The same criteria as for humans were used for reassigning non-identified or partially identified 

serovars. The detailed amount and percentage of reassigned records among the total positives in the BSs or 

EUSR are shown in Table 8.  
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Table 7: Number of sampling units submitted and positivity percentages in animal reservoirs in the EU and Norway. 

Country Broiler carcasses
(a)

 Pigs – lymph nodes Laying hen flocks Turkeys – fattening flocks Cattle 
(b)

 

 Submitted Positives Submitted Positives Submitted Positives Submitted Positives Submitted Positives 

  n %  n %  N %  N %  N % 

AT 408 10 2.5 617 13 2.1 1,966 49 2.5 1,010 141 14.0 3,037 12 0.4 

BE 380 77 20.3 601 78 13.0 649 76 11.7 370 40 10.8 81 81 100.0 

BG 316 85 26.9 176 35 19.9 119 0 0.0 85 0 0.0 477 3 0.6 

CY 357 38 10.7 359 47 13.1 40 5 12.5 70 28 40.0 - - - 

CZ 422 23 5.5 654 38 5.8 449 40 8.9 970 192 19.8 696 24 3.4 

DE 432 76 17.6 2,567 325 12.7 6304 220 3.5 1,475 108 7.3 4,053 163 4.0 

DK 396 0 0.0 998 80 8.0 508 3 0.6 294 1 0.3 7,915 9 0.1 

EE 102 0 0.0 420 27 6.4 52 4 7.7 2 0 0.0 1,550 10 0.6 

ES 389 58 14.9 2,621 806 30.7 845 376 44.5 1,910 747 39.1 258 29 11.2 

FI 369 0 0.0 419 0 0.0 950 1 0.1 675 0 0.0 3,415 7 0.2 

FR 422 32 7.6 1,163 215 18.5 3067 187 6.1 1,630 157 9.6 - - 2.4 

GR 1,215 180 14.8 345 73 21.2 112 35 31.3 220 16 7.3 56 1 1.8 

HU 321 275 85.7 656 75 11.6 866 101 11.7 1,465 915 62.5 178 31 17.4 

IE 394 39 9.9 422 65 15.4 204 2 0.98 1,295 294 22.7 10,121 430 4.2 

IT 393 66 16.8 709 116 16.4 821 171 20.8 1,370 277 20.2 1,797 17 0.9 

LT 374 26 6.9 461 8 1.7 13 0 0.0 315 14 4.4 172 2 1.2 

LU 13 0 0.0 313 50 16.0 7 1 14.3 1 0 0.0 83 7 8.4 

LV 122 6 4.9 392 21 5.4 69 14 20.3 1 0 0.0 25 0 0.0 

MT 367 77 21,0 - - - - - - - - - - - - 

NL 429 43 10.0 1,087 92 8.5 2346 62 2.6 860 77 9.0 330 18 5.5 

PL 419 107 25.5 1,176 75 6.4 1533 192 12.5 1,610 285 17.7 130 0 0.0 

PT 421 47 11.2 658 156 23.7 227 83 36.56 525 26 5.0 56 0 0.0 

RO 357 17 4.8 - - - - - - - - - 521 3 0.6 

SE 410 1 0.2 394 6 1.5 724 5 0.7 70 0 0.0 3,728 60 1.6 

SI 413 7 1.7 431 27 6.3 172 18 10.5 655 100 15.3 386 1 0.3 

SK 422 91 21.6 385 30 7.8 138 10 7.2 125 15 12.0 95 0 0.0 

UK 401 14 3.5 639 139 21.8 5523 67 1.2 1,570 401 25.5 895 895 100.0 

EU Total 9,249 1,215 13.1 18,663 2,596 13.9 27,704 1630 5.9 18,514 3,834 20.7 40,055 1,803 4.5 

NO 396 0 0.0 408 1 0.2 1080 0 0.0 360 0 0.0 2,589 1 0.0 

Total 10,035 1,225 12.2 19,072 2,598 13.6 28,784 1630 5.7 18,849 3,834 20.3 42,644 1,804 4.2 

(a) In the specific case of Greece, broiler flocks. (b) In the specific case of Denmark, carcass samples collected at the slaughterhouse.
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Table 8. Number and percentage of records reassigned to serovars in animal reservoirs. 

 

Country Incomplete identification Aggregated 
(d)

 Total 

  

Species/genus
(a)

 Subspecies
(b)

 Serogroup
(c)

 

 

Positives Reassigned 

  

n % n % n % n % 

 

n % 

B
ro

il
er

s 

BE 15 19.48 

      

77 15 19.48 

IT 13 19.70 

      

66 13 19.70 

LT 15 57.69 

      

26 15 57.69 

MT 10 12.99 

      

77 10 12.99 

NL 1 2.33 

      

43 1 2.33 

P
ig

s 

BG 

  

4 11.43 

    

35 4 11.43 

CY 5 10.64 3 6.38 1 2.13 

  

47 9 19.15 

DE 5 1.54 

  

64 19.69 

  

325 69 21.23 

EE 

  

4 14.81 

    

27 4 14.81 

ES 62 7.69 

      

806 62 7.69 

FR 5 2.33 

      

215 5 2.33 

GR 3 4.11 8 10.96 

    

73 11 15.07 

IE 1 1.54 

      

65 1 1.54 

IT 41 35.34 6 5.17 

    

116 47 40.52 

LV 2 9.52 

      

21 2 9.52 

NL 2 2.17 2 2.17 

    

92 4 4.35 

SI 4 14.81 

      

27 4 14.81 

T
u

rk
ey

s 

CY 

    

5 17.86 

  

28 5 17.86 

DE 

    

11 10.19 

  

108 11 10.19 

DK 1 100.00 

      

1 1 100.00 

HU 1 0.11 2 0.22 

    

915 3 0.33 

IT 

  

8 2.89 

    

277 8 2.89 

SI 

    

1 1.00 

  

100 1 1.00 

L
a

y
er

s 

AT 2 4.08 

      

49 2 4.08 

BE 3 3.95 

  

3 3.95 

  

76 6 7.89 

CY 

    

1 20.00 

  

5 1 20.00 

DE 13 5.91 

    

23 10.45 220 36 16.36 

ES 186 49.47 

      

376 186 49.47 

FR 20 10.70 

    

6 3.21 187 26 13.90 

HU 

      

26 25.74 101 26 25.74 

IT 

      

115 67.25 171 115 67.25 

PL 

      

29 15.10 192 29 15.10 

PT 

      

9 10.84 83 9 10.84 

UK 

      

16 23.88 67 16 23.88 

C
a

tt
le

 

BE 3 3.70     4 4.94     81 7 8.64 

DE 4 2.45 

    

36 22.09 163 40 24.54 

DK 4 44.44 

      

9 4 44.44 

ES 13 44.83 

      

29 13 44.83 

HU 25 80.65 

      

31 25 80.65 

IT 4 23.53 

      

17 4 23.53 

LU 1 14.29 

      

7 1 14.29 

NL 1 5.56 

      

18 1 5.56 

SE 6 10.00 

      

60 6 10.00 

UK 824 92.07 

      

895 824 92.07 

(a) Salmonella spp, Salmonella enterica, Salmonella not typed, Salmonella untyped  

(b) Salmonella enterica enterica, Subspecies I 

(c) B, C, D, E, D1, C1, C2-C3, D1, E1 

(d) ”Others”, ”Other serovars” 
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Serovar information 

The main serovars vary from source to source (Table 9). As an example, S. Orion was only found in 

turkeys, and the importance of S. Infantis and S. Enteritidis in Gallus gallus, S. Typhimurium and S. Derby in 

pigs and S. Bredeney and S. Saintpaul in turkeys is much larger than in other sources. This is an important 

feature for source attribution, as it helps the tracking of animal sources when cases of those serovars are 

reported in humans.  

Table 9. Relative proportions of the top-10 serovars found in broiler carcasses, pig lymph nodes, turkey 

flocks and laying hen flocks in the EFSA Baseline Studies.  

Serovar
(a)

 Broilers
(b)

 Pigs
(c)

 Turkeys
(d)

 Layers
(e)

 

S. Infantis 29.2 1.9 6.6 11.5 

S. Enteritidis 13.6 4.9 5.1 59.9 

S. Kentucky 6.2 0.0 0.1 0.0 

S. Typhimurium 4.4 44.9 7.9 8.3 

S. Bredeney 4.3 2.0 17.2 1.0 

S. Virchow 4.1 0.3 1.0 2.7 

S. Hadar 3.8 0.3 14.0 3.4 

S. Paratyphi var. Java 3.8 0.1 0.2 0.1 

S. Agona 3.0 1.1 2.9 2.2 

S. Indiana 2.9 0.1 3.0 0.3 

S. Derby 0.8 14.6 11.3 0.0 

S. Rissen 0.0 5.8 0.0 0.5 

S. Anatum 0.7 2.4 0.4 0.7 

S. London 0.0 1.3 2.9 0.0 

S. Brandenburg 0.2 1.2 0.0 0.9 

S. Saintpaul 0.2 0.1 10.3 0.0 

S. Kottbus 0.7 0.3 8.3 0.0 

S. Orion 0.0 0.0 6.1 0.0 

S. Blockley 1.8 0.1 3.7 0.0 

S. Mbandaka 2.4 0.3 0.8 6.6 

S. Livingstone 1.0 0.4 0.0 3.4 

S. Ohio 0.9 0.3 0.0 2.4 

S. Braenderup 0.2 0.2 0.1 2.0 

(a) Combined list of the top ten serovars in all BS. Top-ten serovars for each source have values in bold.  

(b) EFSA (2010c). Participating countries (29): AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GR, HU, IE, IT, LT, LU, LV, 

MT, NL, NO, PL, PT, RO, SE, SI, SK, UK; 

(c) EFSA (2008a). Participating countries (26): AT, BE, BG, CY, CZ, DE, DK, EE, ES, FI, FR, GR, HU, IE, IT, LT, LU, LV, NL, 

NO, PL, PT, SE, SI, SK, UK. 

(d) EFSA (2008b). Participating countries (26): AT, BE, BG, CY, CZ, DE, DK, EE, ES, FI, FR, GR, HU, IE, IT, LT, LU, LV, NL, 

NO, PL, PT, SE, SI, SK, UK. 

(e) EFSA 2010a. Participating countries (28): AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GR, HU, IE, IT, LT, LU, LV, NL, 

NO, PL, PT, RO, SE, SI, SK, UK. 
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As expected, the serovar profile also varies among MSs within each source. In broiler carcasses, S. Enteritidis was isolated in 15 out of 23 

countries where positive broiler samples were detected. S. Infantis was observed in 15 countries, and S. Typhimurium in 10. In the Czech Republic, 

Lithuania and Sweden, S. Agona predominated, while S. Kentucky was the most frequent serovar in Ireland, Malta and the United Kingdom. In 

Hungary, over 80% of all isolates were S. Infantis (Figure 5).  

 

Figure 5. Relative frequency of selected Salmonella serovars in broiler carcasses. The number of positive samples is shown at the top of the bars. 
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In pigs, S. Typhimurium was observed in all countries with positive samples, followed by S. Derby and S. Enteritidis, which occurred in 19 and 

20 out of the 23 countries, respectively. Those were also the serovars observed in larger proportions in the countries where they occurred (Figure 6).  

 

Figure 6. Relative frequency of selected Salmonella serovars in pigs. The number of positive samples is shown at the top of the bars. 

 

13 78 35 47 38 325 80 27 806 215 73 75 65 116 8 50 21 92 1 75 156 6 27 30 139

0

10

20

30

40

50

60

70

80

90

100

AT BE BG CY CZ DE DK EE ES FR GR HU IE IT LT LU LV NL NO PL PT SE SI SK UK

Enteritidis Typhimurium Infantis Kentucky Virchow Agona

Hadar Derby Newport Bovismorbificans Other



34 

 

In turkeys, S. Typhimurium, S. Derby and S. Hadar prevailed among the 11 selected serovars, with the exception of Slovenia and Hungary, where 

S. Infantis and S. Enteritidis were more frequent. However, most positives were among serovars aggregated as “Others”, due to the importance of S. 

Saintpaul and S. Kottbus in this reservoir (Figure 7).  

 

Figure 7. Relative frequency of selected Salmonella serovars in turkeys. The number of positive samples is shown at the top of the bars. 
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In layers, S. Enteritidis was present in 17 out of 22 countries, being the most frequent serovar in the majority of countries where it was detected. 

Finland, Luxembourg and Sweden were exceptions, with a predominance of S. Typhimurium. However, this could be due to a very small number of 

positive samples (one, one and five, respectively), the same occurring with S. Derby in Ireland (one out of two positives) (Figure 8). 

 

Figure 8. Relative frequency of selected Salmonella serovars in laying hens. The number of positive samples is shown at the top of the bars. 
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In cattle, S. Dublin (grouped as “Others” in Figure 9) was the dominant serovar in eight out of 22 countries, followed by S. Typhimurium, which 

was observed in large proportions in 12 countries and predominated in six. Other serovars of importance in specific countries in this source were S. 

Montevideo, S. Mbandaka and S. Infantis.  

 

Figure 9. Relative frequency of selected Salmonella serovars in cattle. The number of positive samples is shown at the top of the bars. 
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Overall, S. Enteritidis and S. Typhimurium were the most frequent and widespread serovars in animal 

reservoirs, followed by S. Infantis, S. Hadar and S. Derby. An exception can be noted for turkeys, where S. 

Bredeney, S. Hadar and S. Saintpaul were more frequently isolated. Despite its importance in humans, S. 

Stanley was absent in all five animal sources. 

Phage typing information was scarce and non-representative in the animal sources, as it is not 

mandatory for countries to report them. This kind of information was provided by seven out of 26 countries 

in the pigs BS; six out of 26 in the turkeys BS; only Italy and the Netherlands for laying hens, and no phage 

types were reported for broilers.  

5.1.2.3. Food production and trade data 

For consumption data calculations, it was assumed that the amount of food available in a country can 

be derived from how much is produced, how much is imported and how much is exported, thus making it 

necessary to obtain country-specific production data, as well as country-to-country imports and exports. By 

doing this, the model can take into consideration the amount of food present in a given country which 

originated from other countries and use the country- and food-specific serovar prevalences for the attribution. 

For this study, extra-EU food trade was not taken into consideration. 

The statistical office of the European Union (EUROSTAT) was established in 1953, and its task is to 

provide the European Union with statistics at European level that enable comparisons between countries and 

regions. Among other information, it collects data on the production and trade of food products and animals 

for slaughter. International trade statistics, as produced by EUROSTAT, report the value and quantity of 

goods traded between EU MSs (Intrastat) and by EU MSs with third countries (Extrastat). European 

Community legislation ensures that the statistics provided to EUROSTAT by the MSs are based on legal 

texts and on harmonized definitions and procedures. However, an evaluation of the quality of the trade data 

collected by EUROSTAT has revealed major and persistent inconsistencies in the various MSs intra-EU 

trade statistics (EFSA, 2010b). Data availability varies depending on country and products selected, since the 

information is provided directly by MS, being subject to variations in national focus and cultural differences. 

Food production data were derived by EFSA from the EUROSTAT database on slaughtered animals 

for food consumption and the EUROSTAT PRODCOM database.  

5.1.2.3.1. Data selection and handling 

The domestic amount of a product available for consumption in a country was estimated as Domestic 

Production minus Export, whereas the amount of imported food available for consumption in MS A 

originating from MS B was estimated as Import minus Re-export (when re-export was relevant). Due to 

differences between numbers reported in the production, imports and exports datasets, this operation in some 

cases resulted in negative amounts of national production available, meaning the volume exported was larger 

than what was domestically produced. In order to ensure that MSs would still have nationally produced food 

available in their own country, it was assumed that imported products could also be re-exported.The resulting 

trade matrix for each food source indicating the quantity transferred from an exporting to an importing 

country was used as input to the model.  

This approach assumes that: 1) all the food available for consumption in the country is consumed; 2) 

countries do not export the whole national production of a food item 3) food exported by a country is not re-

imported.  
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Dealing with missing data 

Information on poultry for meat production (no differentiation between broilers and turkeys) were not 

available for Belgium in 2007 and 2008. Availability of data on the annual quantities of poultry, pork and 

bovine meat and eggs produced varied per year and per MS. For example, egg production data were lacking 

for several countries, and data for most food sources and most years were missing in some countries (e.g. 

Cyprus). Data on the export of eggs were not available for Cyprus. All MSs reported imports from other MSs 

for all food products in the study period. 

Missing data on annual quantities of poultry meat products sold per MS, with differentiation between 

boilers, turkeys and other poultry species were obtained from the 2009 annual report of the Association of 

Poultry Processors and Poultry Trade in the EU Countries (AVEC, 2009). 

Countries which had information missing for a year had the missing value estimated based on the 

percentage of increase or decrease between available years; when data from only one year was available, that 

value was used as surrogate for the missing years. 

Dataset validation 

The data obtained were validated by comparing it with consumption data available from the World 

Health Organization Global Environment Monitoring System Food Consumption Cluster Diets 

(GEMS/Food, 2006). The WHO data is available in grams/person/day, so the EUROSTAT data were 

converted to grams and divided by the country population (WHO, 2011) and by 365 to match the same unit. 

As the WHO data only offered the broad category “poultry”, broilers and turkeys derived from the AVEC 

data were added together for this exercise. Relative proportions of consumption of poultry, pork and eggs 

were calculated, and a Proportional Similarity Index (PSI /Czekanowsky index) was calculated to compare 

those proportions between the two groups in each country. The PSI is an estimate of the area of intersection 

between two frequency distributions (Rosef, 2005), and is calculated as 

 

PSI= 1-0.5*∑|p1-q1| = ∑ min(p1,q1) 

 

The method is traditionally used for calculating niche overlap and resource availability in population 

ecology (Feinsinger, 1981) or proportions of identified bacterial strains in epidemiology (Müllner, 2009; 

Müllner, 2010), but here we considered that each of the relative proportions among the three sources 

corresponds to the area under a probability curve, and so the same measure could be applied. A PSI of 1 

means a complete overlap, or 100% similarity. An “overall PSI” for the whole dataset was calculated by 

using 24 instead of 1 for the subtraction, which arithmetically corresponds to the average of the country PSI 

values. In Table 10 are the PSI values comparing the relative proportions of consumption of the selected 

sources according to GEMS/Food and EUROSTAT-based surrogates. Nineteen out of 24 countries had a PSI 

of 0.9 or higher and three were larger than 0.8, suggesting that the consumption profiles composed using 

EUROSTAT data are highly similar to the original GEMS/Food profiles for most countries. The exception is 

noted for Cyprus, which may have an impact on the attribution estimates for this country. This issue is 

further addressed in the Discussion. 
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Table 10. Comparison of the relative proportion of consumption of pork, poultry meat and table eggs in the 

WHO GEMS/Food data and the surrogate values calculated from EUROSTAT data. 

Country WHO GEMS/Food (%) EUROSTAT (%) PSI 

Poultry Pig Egg Poultry Pig Egg 

AT 16.7 70,9 12,4 18,8 68,8 12,4 0,98 

BE 32.3 50,5 17,2 28,7 58,1 13,2 0,92 

CY 38.7 48,3 13,0 96,8 2,9 0,3 0,42 

CZ 28.6 52,7 18,6 28,4 52,9 18,7 1,00 

DE 17.4 67,0 15,6 24,1 63,2 12,7 0,93 

DK 19.4 64,2 16,5 13,1 81,3 5,6 0,83 

EE 33.5 47,6 18,8 33,4 49,7 16,9 0,98 

ES 25.8 61,0 13,2 30,9 56,2 12,9 0,95 

FI 25.8 58,7 15,5 24,5 49,9 25,6 0,90 

FR 32.9 47,7 19,4 42,1 39,5 18,4 0,91 

GR 31.5 53,1 15,4 33,2 47,9 18,9 0,95 

HU 33.2 49,8 17,0 41,0 42,0 17,1 0,92 

IE 36.3 54,7 9,0 40,9 45,7 13,4 0,91 

IT 24.4 59,9 15,7 31,0 53,9 15,1 0,93 

LT 24.6 51,4 23,9 30,7 51,1 18,2 0,94 

LU 47.8 44,3 8,0 32,2 45,7 22,1 0,84 

LV 30.3 44,7 25,0 33,6 43,0 23,4 0,97 

NL 16.2 59,6 24,2 31,0 51,5 17,5 0,85 

PL 23.8 61,7 14,5 31,3 56,6 12,0 0,92 

PT 32.7 54,2 13,1 34,8 50,7 14,5 0,97 

SE 20.9 61,3 17,8 22,3 58,6 19,1 0,97 

SI 37.9 50,9 11,2 44,6 39,2 16,2 0,88 

SK 36.5 45,8 17,7 28,2 48,7 23,1 0,92 

UK 44.2 38,7 17,1 48,0 33,7 18,3 0,95 

Overall PSI 0.91 

 

5.2. Final dataset for the source attribution model 

Based on data availability and quality, 24 countries were included in model: Austria, Belgium, Cyprus, 

Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, 

Lithuania, Luxembourg, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, The Netherlands and the 

United Kingdom. Countries which were initially analyzed but were excluded from the final dataset were 

Bulgaria, which presented 100% of human cases without serovar detailing; Romania, which only participated 

in one BS and had not enough surrogate data to be retrieved from the EUSR, besides reporting 84% of cases 

without serovar information; Norway, which is not part of the EU and does not report to EUROSTAT and 

Switzerland, which is also not part of the EU, and does not report to EUROSTAT and, more importantly, to 

TESSy.  

As some countries had only a few human cases reported each year, cases from 2007 to 2009 were 

added together to increase data robustness. Considering that year is not one of the model dimensions and 
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prevalences in reservoirs were obtained as cross sectional data from different time points, this has no 

negative impact on the results, as long as they are interpreted as representative of the period as a whole, not 

of each year individually.  

The number of outbreak-related cases per serovar were subtracted from the total number of 

domestically acquired cases to estimate the number of sporadic cases, if this was not already done by the 

reporting country. Furthermore, one case was subtracted from each outbreak and added to the sporadic cases, 

as it is assumed that the index case of an outbreak was a sporadic case. 

Based on the availability of EU-wide homogeneous data or with at least good-quality surrogates, food-

animal sources included were broilers, pigs, turkeys and laying hens (as the animal reservoir for eggs), and 

due to better completeness and availability, the resulting trade data from 2009 was used as surrogate 

consumption data for those sources. Data from the cattle reservoir were, in many occasions, well-

representative of clinical cases, outbreak investigations or localized surveys. However, the need for a 

country-wide representative coverage that would allow cross-country comparisons was rarely met, and 

efforts to improve the dataset by using herd information from 2007-2008 or slaughterhouse carcass samples 

did not prove sufficient to obtain a representative dataset for this source in the model.  

Serovar was chosen as subtyping level, and twenty-two of them were selected to be specifically 

addressed, based on their presence and importance in humans and in the main animal reservoirs: S. Agona, S. 

Anatum, S. Bovismorbificans, S. Braenderup, S. Brandenburg, S. Bredeney, S. Derby, S. Enteritidis, S. 

Hadar, S.Heidelberg, S. Infantis, S. Kentucky, S. Kottbus, S. Livingstone, S. London, S. Mbandaka, S. 

Montevideo, S. Newport, S. Rissen, S. Saintpaul, S. Typhimurium and S. Virchow. Albeit important in 

humans in most of the 24 countries, S. Dublin, S. Ohio and S. Stanley were not included in the list because S. 

Stanley was not isolated from the animal sources considered for the source attribution model, and the other 

two became irrelevant after the cattle reservoir was removed. For modeling purposes, serovars not included 

in the above list were aggregated as “Others”. The building structure of the final Salmonella dataset (trade 

data not included) is shown in Figure 10. 

Data were stored and analyzed in SAS Enterprise Guide, SAS Institute, SAS/STAT® User’s Guide, 

Version 8, Cary, NC: SAS Institute Inc., 1999. 
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Figure 10. Diagram illustrating the construction of the final dataset for source attribution. Dark blue, dark 

green, pink and orange blocks represents datasets. Light blue blocks represent primary datasets originally 

provided to compose the blue blocks. Light green blocks represent surrogate data from other datasets used to 

complement the green blocks. 
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5.3. The European Union model (Manuscript II) 

Before describing the methods used in this thesis, it is necessary to revise a few concepts.  

5.3.1. Bayesian inference using Markov Chain Monte Carlo simulations 

The probability of occurrence of an event can be described by a probability model. Those models 

typically contain parameters, which are regarded as fixed quantities that need to be estimated (King et al., 

2010). The classical approach to estimate those values is to form a likelihood, which is a function of the 

model parameters, and to use the maximum likelihood estimate as the obtained value. Classical inference 

sees probability models as the data observed given the parameter, while Bayesian inference also considers 

the parameter given the data. This means that, in the Bayesian approach, model parameters are treated in the 

same way as the data, thus regarded as having distributions. Before data are entered into the model, those 

distributions are used as information about the parameters and described as prior distributions. So, a single 

parameter value is considered as only one of the possible values of that parameter, with its probability being 

defined by the prior distribution. The posterior distributions of the parameters can then be estimated, taking 

into account the prior information and the data (Lawson, 2009; King et al., 2010).  

The choice of a prior distribution will depend on the prior knowledge available. There are three ways 

to choose a prior: a) subjectively, when there is no historical data available. In this case, the distribution 

shape and parameters express the experimenter’s own personal experience and assumptions; b) objectively, 

when historical data on the distribution of parameter values or data from experiments done prior to the one 

being undertaken are available; c) when no strong preferences over values exist for some parameters, it is 

possible to assume flat (also known as non-informative) prior distributions. Uniform or close-to-uniform 

distributions are used, as they have a relatively flat shape, and so have little impact on the posterior 

distributions when compared to the likelihood of the data (Lawson, 2009).  

The choice of a non-informative prior distribution can be made with some general understanding of 

the range and behavior of the variable. This makes it possible to estimate values for which no prior 

information is available, but which should be calculated relatively to each other. As an example, taking the 

following situation: 

 50% of 30 rat feed pellets are inoculated with 10 cfus of S. Enteritidis. This set of pellets will 

be called A; 

 50% of 30 rat feed pellets identical to set A are inoculated with 10 cfus of S. Kentucky. This 

set of pellets will be called B; 

 Set A is fed to a group of 100 Wistar rats. This group will be called X;  

 Set B is fed to a group of 100 Wistar rats identical to group X. This group will be called Y; 

 It is assumed that each rat in groups X and Y eats the same amount of feed as the others, and 

that all 30 pellets from each set were consumed; 

 It is assumed that all conditions for both groups, except the noted differences in exposure, 

were identical; 

 20 rats in group X become ill; 

 80 rats in group Y become ill; 

The situation shows that some virulence factor (or factors) related to the two subtypes of Salmonella 

makes S. Kentucky more capable of causing disease in a population than S. Enteritidis. However, although 

this factor may be known on molecular level, it is not currently quantifiable. The scenario in group A, in 
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which 30 pellets with 50% contamination by S. Enteritidis generated 20 ill rats and the similar scenario in 

group B can be written as: 

A) 0.5 * 30 = 20 cases 

B) 0.5 * 30 = 80 cases 

Considering that the two operations look identical but produce different number of cases, the virulence factor 

“q” should be entered, in order for them to make sense: 

A) 0.5 * 30 * qEnteritidis = 20 cases 

B) 0.5 * 30 * qKentucky = 80 cases 

Even if no real (measurable) values are available for qEnteritidis and qKentucky, or if they in truth represent 

a group of factors instead of one, it is still possible to estimate them relatively to each other, by assuming a 

value of 1 for qEnteritidis and defining “q” as uniform distribution ranging from zero to 100. The value for 

qKentucky will then be estimated relatively to 1 with a maximum possible value of 100, and it is expected to be 

larger than qEnteritidis, as it causes more cases under the same conditions. 

As explicit analytic forms for posterior distributions are usually not available, the approach used is to 

employ simulation procedures which result in samples from those distributions. The process of summarizing 

samples from a probability density as a way to integrate it is known as Monte Carlo Integration. It is based 

on the assumption that, if the density generates the sample, from that sample it is possible to approximately 

recreate the density (Smith and Gelfand, 1992). As an example, Figure 10 shows a distribution from which 

samples (blue dots) are taken. Those samples are then used to build a histogram, and the original curve can 

be derived again from the histogram shape. The values used as “results” of the model are summary statistics 

of the resulting sample, represented in the figure by the histogram. The most common is to use the mode as 

the most likely value, and dispersion measures as a way to assess the uncertainty around the values obtained 

(King et al., 2010) (Figure 11).  

 

Figure 11. Monte Carlo Integration. If a density generates a sample, it is possible to approximately recreate 

that density from that same sample. 
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The most common way of generating samples from the posterior distribution for a Monte Carlo 

Integration is by using Markov Chains. Markov Chains are stochastic sequences of numbers in which each 

value in the sequence depends only on the last (Gilks et al., 1996). The nature of the Markov Chain states 

that it will tend to converge to a stationary distribution after a period, so, by assuming that the stationary 

distribution of the chain is equal to the posterior distribution of the model, the set of values generated will 

tend to converge to the general shape and specifications of the posterior distribution (King et al., 2010). The 

whole process is known as Markov Chain Monte Carlo (MCMC), and the generation of each sample is called 

an iteration. 

In order to construct a MCMC sampler, the assumption that the stationary distribution of the chain is 

the posterior distribution of the model must be fulfilled. For that, the Gibbs sampler, which is a variation of 

the Metropolis-Hastings rejection algorithm, can be used to define the desired stationary distribution and 

reject generated values that do not fit it (Gilks et al., 1996; King et al., 2010). Given the principle by which 

Markov Chains are generated, each value generated is closely correlated to the one generated immediately 

before. When the correlation gets too strong, the chain may “double back” and start generating numbers that 

have already been drawn, and so the sampling stops progressing (Figure 12).  

 

Figure 12. Markov Chain doubling back while sampling from a posterior distribution. 

To avoid that, it is possible to define that a certain amount of values must be generated and “pre-

selected”, but only giving final acceptance to the value with the smallest correlation coefficient in relation to 

the others. This method is known as over-relaxation, and it also helps maintaining the randomness of the 

sample, as it allows the sampling to move from the area of the posterior distribution that was being sampled 

to another area.  
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When the chain reaches the target distribution, it is said that the model converged. Considering that the 

stationary distribution has been predefined, and that samplers which do not allow the values drawn to deviate 

from the chosen specifications have been used, it is necessary to re-assert the randomness of the process. 

This is partially achieved through over-relaxation, but mostly by the simultaneous running of more than one 

Markov Chain, with starting values located at different points of the distribution. As all chains have the same 

posterior distribution defined as their stationary distribution, it is expected that all of them converge to the 

same value range at some point. 

Model convergence can be monitored as described by Gelman and Rubin (1992), by observing that the 

variance between chains should not be larger than within-chain variance. The two variances are compared to 

generate the Potential Scale Reduction Factor (PSRF). A PSRF close to one indicates that approximate 

convergence has been reached (van Valkenhoef et al., 2012). This can be visually assessed in a Brooks-

Gelman-Rubin (BGR) diagram, where the PSRF is plotted against the number of iterations run (Figure 13).  

 

 

Figure 13. BGR diagram from WinBUGS showing four chains converging between iterations 2000 and 

5000. 

 

Convergence can also be checked visually in a time-series graph, where values generated are plotted 

against the number of iterations run; in this graph, lines representing the chains should overlap and be 

reasonably stable to consider that convergence has occurred (Figure 14). 

 

Figure 14. Time-series diagram from WinBUGS showing overlapping of four chains (shown in red, blue, 

green and black). 
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In both graphs, the evaluation of how much chains overlap or how stable they are is rather subjective, 

and so it is not possible to affirm that a model has certainly converged. However, situations in which 

convergence has certainly not occurred are more clearly identified, as individual chains are seen in different 

areas of the graph, or moving briskly between a wide range of values.  

5.3.2. The EU model 

The EU model was based on Hald et al. (2004) and Pires et al. (2010), and modified to 1) 

accommodate data from multiple countries, 2) use trade data as a surrogate for consumption data and 3) 

allow for the detection of the country of origin of the sources causing cases in the reporting countries.  

The model is built on a Bayesian framework and includes three dimensions: the Salmonella subtype 

(i), the food/animal source (j) and the country of attribution (c). It attributes sporadic cases of salmonellosis 

to animal reservoirs, to international travel, and gathers cases related to sources and/or serovars not included 

in the model as “unknown”.  

A sporadic case is defined as a subject that could not be associated with a recognized foodborne 

disease outbreak. Outbreak-related cases are added to the final results of the model, being attributed to the 

source implicated in the outbreak, if that is known. If not, they are considered outbreaks with unknown 

source. The outbreak cases are not modeled together with the other cases, as outbreaks caused by serovars 

only occurring in one source will result in an overestimation of the total cases attributable to that source. At 

the same time, outbreaks of more ubiquitous serovars would underestimate the number of infections caused 

by that source. Cases which do not specifically report a history of travel up to one week prior to symptom 

onset are assumed to be domestic. 

Underreporting of cases is taken into consideration by multiplying sporadic reported cases by the 

correspondent UF (Havelaar et al., 2012) in each MS after attribution. Outbreak cases are assumed to have 

been reported in a more complete manner, and so were not adjusted. The underreporting factors were fitted 

as lognormal distributions, following the methodology described in Hald et al. (2012). Values used to 

include UFs in the model are presented in Figure 15, extracted from Hald et al. (2012). 
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Figure 15. Mean and standard deviation values of the fitted lognormal distributions for the UFs. Source: 

Hald et al. (2012). 

 

5.3.2.1. Model parameters and specifications 

The model takes into account the number of cases caused by a serovar, the prevalence of each serovar 

in each source in each country and the relative impact of a set of unknown factors, as described in Hald et al. 

(2004). Those factors were included as multi-parameter flat priors, and account for the differences in the 

ability of different subtypes to cause disease and of different sources to act as vehicles for infection. Multiple 

loops were included to accommodate data from the 24 countries. An overview of the model parameterization 

can be drawn as: 
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acj ~ Uniform (0,100) 

qi ~ Uniform (0,100) 

λci ~ Poisson (oci),  

λci =  λckji 

λckji = pkij * mckj * acj * qi  

where: 1) λckji is the expected number of cases per serovar i and source j reported in country c and caused by 

food produced in country k; 2) pkij is the prevalence of serovar i in source j in country k; 3) mckj is the amount 

of source j available for consumption in country c produced in country k; when a source is domestically 

produced in the country of attribution, c=k; 4) acj is the source-dependent factor for source j in country c; 5) 

qi is the subtype-dependent factor for serovar i. The source-dependent factor acj was assumed to vary 

between countries, accounting for variability in consumption patterns and preferences not captured by mckj, 

also including general variations between sources, e.g, bacterial load/concentration in the food and 

processing, handling or preparation practices.The subtype-dependent factor qi is a one-dimensional 

parameter, meaning that it is a property of the Salmonella serovar and assumed independent of the country of 

infection.  

The amount of food source available for consumption in the country where a Salmonella case was 

reported considers both domestically produced and imported foods (mckj). The qi prior for S. Enteritidis is 

defined as 1, and all other qi values are estimated relatively to this one. The number of human sporadic and 

domestic cases attributed to each source per country (λcji) is estimated assuming a Poisson distribution of the 

observed number of sporadic cases per subtype per country (oci). Model parameters are presented in Table 

11. 

The model was built in WinBUGS 1.4 (http://www.mrc-bsu.cam.ac.uk/bugs/), which uses Markov 

Chain Monte Carlo (MCMC) with Gibbs sampling as a default to obtain summary values for posterior 

distributions. Five independent chains ran for 40,000 iterations each to obtain the values for acj and qi. Each 

chain had a different set of starting values for the priors, widely dispersed in the target distribution. Chain 

convergence was monitored using the methods described by Gelman and Rubin (Gelman and Rubin, 1992) 

and was considered to have occurred when the variance between the different chains was no larger than the 

variance within each individual chain, and when the chains had reached a stable level. 
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Table 11. Parameters used to estimate the number of sporadic cases of salmonellosis attributable to the 

animal sources 

Notation Description Estimation 

i (1-22) Salmonella serovar - 

j (1-4) Food-animal source  

c (1-24) Country where the human case was reported   

k (1-24) Country of origin of the food product
(a)

  

oci Observed cases caused by serovar i in country c Data 

obci Observed cases caused by serovar i known to be outbreak related in country c. 

For each outbreak, one case was subtracted so that one outbreak contributed 

with one sporadic case. 

Data 

ytci Observed cases caused by subtype i in country c that was reported as travel-

related 

Data 

pkji Prevalence of subtype i in source j in country k Data 

mckj Amount of source j available for consumption in country c produced in 

country k
(a)

 

Data 

acj Source-dependent factor for source j and country c dunif(0,maxacj) 

qi Subtype-dependent factor for subtype i dunif(0,maxqi) 

ufc Underreporting factor for country c dllnorm( , ) 

spdoci Total number of sporadic cases caused by subtype i in country c oci -ytci – (obci+ 1) 

(a) If the food is produced and consumed in the same country, c=k 
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6. RESULTS 

6.1 Attribution of cases to food sources in the country of reporting (Manuscript II) 

The total number of cases attributed after applying the UFs and a summary of the attributed parcels in 

each country are shown in Table 12.  

Table 12. Proportion of Salmonella cases attributed to food sources, outbreaks and international travel in EU 

MSs and regions
(a)

, 2007-2009. 

Country Attributed parcel (%) Total attributed 

  Broilers Pigs Turkeys Layers Outbreaks
(b)

 Travel Unknown   

CZ 0.1 10.9 1.8 84.6 0.0 1.7 0.8 1,178,000 

HU 4.5 26.7 5.4 54.9 0.2 0.2 8.1 1,172,000 

PL 25.1 47.8 1.2 23.0 0.1 0.1 2.7 3,178,000 

SK 0.0 18.0 2.6 76.8 0.0 0.8 1.7 1,051,000 

Eastern EU
(a)

 total 12.9 32.7 2.3 48.3 0.1 0.5 3.2 6,579,000 

DK 3.5 18.0 19.6 10.1 6.8 23.7 18.3 26,331 

EE 4.6 27.5 2.1 55.0 0.3 7.9 2.6 19,970 

FI 0.7 4.7 1.6 2.4 5.9 80.1 4.6 3,210 

IE 1.5 27.2 8.8 14.6 0.9 31.7 15.3 6,660 

LT 1.2 9.5 0.7 86.9 0.1 0.3 1.2 448,600 

SE 0.5 4.8 1.7 2.5 4.4 75.9 10.2 5,851 

UK 0.6 11.7 10.1 35.5 0.0 24.3 17.8 276,400 

Northern EU
(a)

 total 1.1 11.4 4.3 66.0 0.3 9.8 7.1 787,021 

AT 0.1 14.4 3.7 59.8 0.3 12.2 9.4 91,130 

BE 2.3 74.2 9.2 2.9 0.1 0.0 11.2 40,600 

DE 0.5 33.1 1.3 52.0 0.2 5.3 7.6 1,271,000 

FR 13.4 34.3 12.6 2.9 0.2 0.0 36.5 492,000 

LU 4.4 8.5 6.9 49.8 0.0 9.6 20.7 2,154 

NL 4.6 27.3 9.7 26.2 0.5 14.2 17.5 96,580 

Western EU
(a)

 total 3.9 33.1 4.8 38.0 0.2 4.7 15.4 1,993,464 

CY 4.8 51.1 6.4 8.9 0.0 3.8 24.9 87,240 

LV 0.9 13.7 0.3 82.5 0.4 1.5 0.7 98,880 

ES 0.1 33.1 12.9 43.1 0.0 0.0 10.7 2,627,000 

GR 1.2 9.5 0.4 78.3 0.0 2.3 8.3 2,390,000 

PT 42.3 36.3 0.6 9.1 0.0 0.4 11.4 3,206,000 

IT 2.3 73.2 5.3 2.2 0.0 1.3 15.8 766,000 

SI 0.5 20.6 4.0 59.5 0.6 0.0 14.7 104,600 

Southern EU
(a)

 total 15.4 31.5 4.5 36.8 0.0 0.9 10.9 9,279,720 

EU total 12.6 31.1 3.8 42.4 0.1 1.6 8.5 27,998,690 

(a) EU regions as defined by the United Nations. Eastern Europe: Czech Republic, Hungary, Poland and Slovakia. Northern Europe: 

Denmark, Estonia, Finland, Ireland, Latvia, Lithuania, Sweden and the United Kingdom. Southern Europe: Cyprus, Greece, Italy, 

Portugal, Slovenia, Spain. Western Europe: Austria, Belgium, France, Germany, Luxembourg and the Netherlands. 

(b) The proportion of outbreak cases were derived directly from the reported data (i.e. they were not estimated and consequently no 

Credibility Intervals were calculated); includes outbreaks with unknown source. Outbreak cases for which the source was identified 

were assigned to the correspondent animal sources. 
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Detailed accounts of the number of cases attributed to each category and 95% Credibility Intervals for 

countries and regions are available in Appendices A and B. The most important source of human 

salmonellosis at the EU level was estimated to be the laying hen reservoir (i.e. eggs), with 42.4% of cases 

(7,903,000 cases, 95% Credibility Interval (CI) 4,181,000 – 14,510,000), followed by 31.1% attributed to 

pigs (5,800,000 cases, 95% CI 2,973,000 – 11,100,000). Broilers and turkeys were estimated to be less 

important sources of Salmonella, contributing with 12.6% (2,350,000 cases, 95% CI 736,300 – 6,194,000) 

and 3.8% (702,400 cases, 95% CI 325,500 – 1,590,000), respectively. A total of 1.6% (292,400 cases, 95% 

CI 150,700 – 562,700) of all salmonellosis cases were reported as being travel-related, and 0.1% (13,848) of 

cases were reported as being part of outbreaks with unknown source.  

Of all S. Enteritidis infections, 63% (7,504,000 cases, 95% CI 3,964,000-13,770,000) were attributed 

to laying hens, whereas 90.8% of S. Typhimurium originated from pigs (2,950,000 cases, 95% CI 1,510,000-

5,663,000). Compared to infections attributed to layers and pigs, a large proportion of cases were caused by 

other serovars in other sources, such as 4.5% S. Infantis in broilers (106,600 cases, 95% CI 32,560-284,500) 

and 9.2% S. Newport (226,296 cases, 95% CI 84,379-567,930) or 4.5% S. Saintpaul (33,580 cases, 95% CI 

18,052-62,443) in turkeys. In those sources, these serovars were not the most frequently associated with 

cases, but still constituted a significant burden. The proportions attributed to the main serovars in each 

animal reservoir can be observed in Appendix C. 

At regional level, layers were the most important source in all regions, with between 36.7% and 66.0% 

of the Salmonella reported cases attributed to this source. Pigs were the second most important source, 

notably in Eastern (32.7%), Western (33.1%) and Southern EU (31.5%). In Southern and Eastern EU, 

broilers were also an important source, with respectively 12.9% and 15.4% of cases. A large proportion of 

the reported Salmonella infections in Northern European countries were acquired abroad, when compared to 

the other regions, where foreign travel seemed to be of less importance.  

When looking at the attributed proportions within specific countries, the laying hen reservoir was 

estimated as the most important source of salmonellosis in 13 countries (Austria, Czech Republic, Estonia, 

Germany, Greece, Hungary, Latvia, Lithuania, Luxembourg, Slovenia, Slovakia, Spain and the United 

Kingdom), whereas pigs were the larger contributor for salmonellosis in eight (Belgium, Cyprus, Finland, 

France, Ireland, Italy, Poland and Sweden); the proportion of disease attributed to layers and pigs were 

similar in the Netherlands. In Denmark, the most important food-animal source was estimated to be turkeys, 

and broilers were the major source in Portugal. In Finland and Sweden, the majority of Salmonella infections 

were estimated to be travel-related. Travel was also an important source in Ireland, the UK and Denmark, 

although to a lower extent. Figure 16 presents the relative proportion of cases attributed to animal sources, 

travels and outbreaks with unknown source.  
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Figure 16. Proportion of Salmonella human cases attributed to food animal reservoirs, travel and outbreaks 

in 24 EU Member States, 2007-2009 (median %). 

 

6.2. Attribution of cases in the EU to countries of origin of the food sources 

As mentioned earlier, a new feature of this model is the ability to estimate the country of origin of 

cases attributed in other countries, as country-specific prevalences and amounts are used. For all graphs 

shown, cases reported in the country of origin are also included in the total; as an example, Portuguese cases 

attributed to broilers are among the total cases attributed to Portuguese broilers in Figure 18c. 

When considering all sources together, Poland was estimated to be the most important source-country 

for human salmonellosis in the EU, contributing with 21.3% of cases (3,563,710 cases, 95% CI 911,750 – 

10,818,900), followed by 18.4 from Spain (3,081,090 cases, 95% CI 898,170 – 9,056,800) and 14.5 from 

Portugal (2,422,142 cases, 95% CI 361,368 – 8,508,397) (Figure 17). Country-specific estimates with 95% 

Credibility Intervals are shown in Appendix D. 
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Figure 17: Proportion of cases of Salmonellosis in the EU originating from sources of each MSs. 

 

When looking at specific reservoirs, among cases attributed to layers 21.5% (1,701,000 cases, 95% CI 

256,400 – 5,944,000) were estimated to have originated from Greece; 17.9% (1,414,000 cases, 95% CI 

406,000 – 4,286,000) from Spain, 16.3% (1,287,000 cases, 95% CI 492,000 – 3,162,000) from Poland and 

11.1% (874,200 cases, 95% CI 142,000 – 1,299,000) from the Czech Republic (Figure 18a). Pork-attributed 

cases were estimated to originate mostly from Poland (24.2% or 1,402,000 cases, 95% CI 257,000 – 

4,721,000), Spain (22.5% or 1,306,000 cases, 95% CI 423,700 – 3,556,000) and Portugal (15.1% or 876,000 

cases, 95% CI 134,800 – 3,040,000) (Figure 18b). Portuguese broilers were responsible for 55.6% of cases 

(1,305,000 cases, 95% CI 198,500 – 4,535,000) attributed to that source in the EU. Poland was the second 

most important contributor, with 34.2% of cases (803,600 cases, 95% CI 131,400 – 2,768,000) (Figure 18c). 

Cases attributed to Turkeys originated mostly from Spain (43.1% or 302,600 cases, 95% CI 55,350 – 

1,029,000), with large contributions from France (16.6% or 116,700 cases, 95% CI 43,460 – 287,300), 

Hungary (12.0% or 84,060 cases, 95% CI 27,580 – 230,500) and Poland (10.1% or 71,110 cases, 95% CI 

30,950 – 167,900) (Figure 18d). Number and percentage of cases attributed to sources from individual 

countries are show in Appendices D and E, respectively. 
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Figure 18: Proportion of country of origin of food-sources to which cases of Salmonellosis were attributed. 

 

6.3. Posterior estimates for acj and qi 

The estimated ability of food sources to act as a vehicle for disease (acj) was higher for layers in 11 

countries (Austria, Czech Republic, Estonia, Germany, Greece, Hungary, Lithuania, Luxembourg, Latvia, 

Slovenia and Slovakia) and turkeys in 10 countries (Belgium, Cyprus, Denmark, Finland, France, Ireland, 

the Netherlands, Spain, Sweden and the UK). In Italy and Poland, the highest acj was estimated for pigs, 

whereas in Portugal results revealed a higher estimate for broilers. Values estimated for acj are shown in 

Table 13. 

Regarding the ability of different serovars to cause disease, the highest qi value was estimated for S. 

Kentucky, followed by S. Enteritidis (value fixed to 1), S. Newport, S. Virchow and S. Typhimurium. 

Estimated values for qi for all serovars are shown in Table 14.  
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Table 13. Estimated values for acj, source-dependent factor (mean and 95% Credibility Interval) 
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Table 14. Estimated values for qi, Salmonella subtype-dependent factor (mean and 95% Credibility 

Interval). 

Serovar qi 95% CI 

S. Enteritidis 1
(a)

    

S. Agona 0.0527 [0.0488 , 0.0569] 

S. Anatum 0.0252 [0.0223 , 0.0283] 

S. Bovismorbificans 0.1854 [0.1690 , 0.2034] 

S. Brænderup 0.1386 [0.1223 , 0.1567] 

S. Brandenburg 0.1096 [0.1009 , 0.1190] 

S. Bredeney 0.0170 [0.0151 , 0.0191] 

S. Derby 0.0197 [0.0186 , 0.0201] 

S. Hadar 0.0734 [0.0670 , 0.0806] 

S. Heidelberg 0.1163 [0.0960 , 0.1401] 

S. Infantis 0.1223 [0.1167 , 0.1281] 

S. Kentucky 1.9980 [1.7970 , 2.2130] 

S. Kottbus 0.0143 [0.0124 , 0.0164] 

S. Livingstone 0.0595 [0.0540 , 0.0653] 

S. London 0.0826 [0.0751 , 0.0908] 

S. Mbandaka 0.0473 [0.0425 , 0.0523] 

S. Montevideo 0.1124 [0.1044 , 0.1210] 

S. Newport 0.2476 [0.2320 , 0.2645] 

S. Rissen 0.0302 [0.0268 , 0.0340] 

S. Saintpaul 0.0600 [0.0538 , 0.0671] 

S. Typhimurium 0.2153 [0.2054 , 0.2264] 

S. Virchow 0.2469 [0.2320 , 0.2625] 

(a) The q value for S. Enteritidis is fixed to 1, and the other serovars are calculated relatively to it. 

 

6.4. Model goodness-of-fit 

The predictive ability of the model was assessed by estimating the ratio between the observed 

Salmonella cases (sporadic human cases reported in each country) and the number of cases predicted by the 

model and attributable to sources in each country. A ratio of one reflects a perfect model fit, whereas a ratio 

higher than 1 means that the model tends to underestimate the number of cases, and an estimate below 1 

refers to an overestimation. Results of the test showed that the model fit was satisfactory for the vast majority 

of the countries (Figure 19). Poor fit was observed for countries with poor data availability or quality, e.g. 

Cyprus and Luxembourg. The need for complete data is clearly represented in the goodness-of-fit graph, as 
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the countries which are further from the 1.0 axis are the ones which did not report outbreak data (Cyprus, 

Greece, Italy, Luxembourg) or travel information (Belgium, Spain, France). The low fit for Cyprus is also 

likely to be a reflection of the consumption data, as it had to have a large amount of data estimated, and was 

the only low PSI value when comparing the estimated data with the “real” FAO profile, as seen in the data 

management chapter. Luxembourg, on the other hand, was characterized earlier by its small animal sample 

sizes, which could be a reflection of a small production, but also of a non-representative sample which may 

have had a negative impact on the results. 

 

 

Figure 19: Ratio between observed and predicted cases of Salmonella in 24 EU Members States with 95% 

inter-percentile range. A ratio of 1 represents a perfect model fit. 
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6.5. Comparison of Danish attribution estimates between the EU model and the Danish model 

(Manuscript III) 

The objective of this section is to compare the results of the Danish Salmonella source account as 

published in the Annual Report on Zoonoses in Denmark each year with the source attribution results 

obtained for Denmark in the EU model, as an attempt to validate both models and propose improvements to 

both approaches. This comparison proved important because the two models aimed at attributing human 

salmonellosis in Denmark to food/animal sources, but differed in several aspects, particularly regarding the 

data used for prevalence and serovar distributions (Table 15). The impact of these differences, in particular 

in the attribution estimates from imported food (i.e. of foreign origin) was investigated.  

Although the mathematical approach is the same in the two models, differences arise when it comes to 

data used. As an example, the EU model included data from 24 countries and these data included only 

serotyping information and varied in representativeness and quality; on the contrary, the Danish model 

makes use of data with higher discriminatory power, i.e. with a better resolution of subtyping. On the other 

hand, the surrogate consumption data (i.e. production and trade data) used in the EU model are more 

detailed.  

Regarding the prevalence data (p), the EU model uses data from the EFSA BSs, whereas the Danish 

model uses a combination of risk-based data from the Case-by-case Risk Assessment Program (CBC) and 

from national monitoring programs. The CBC started in 2007 and collects samples from batches of Danish 

and imported pork, beef, chicken, turkey and duck, which are then tested for Salmonella. Apart from the 

CBC, individual retail samples are also collected from domestic and imported ducks and turkeys. Results are 

recorded by country of origin, but the prevalence in imported sources enters the model as an overall 

percentage of positive samples by type of imported meat. Salmonella data from domestic sources are also 

collected from pork and beef carcass swabs taken at slaughter and from broiler and layer flocks of Gallus 

gallus.  

For the amount of a food source available for consumption (m), the estimated amount of each source 

imported from each country (in tonnes, EUROSTAT data) were used in the EU model; the Danish model 

uses the total imported amount of a source (in tonnes), without specifying the origin. In practical terms, this 

means that the EU model ultimately works in four dimensions, since the country of origin of the food and to 

which the Salmonella prevalences apply can differ from the country where the human cases were reported, 

and cases are consequently attributed to the countries from where the food originated. This combination of 

data types used for p and m also means that, while the Danish model uses m only for weighting the sources 

among themselves, in the EU model the prevalence in a country exporting a large amount of a food source to 

Denmark will have a higher impact on the results, when compared to countries exporting smaller amounts.  

A summary comparison between the two methods is shown in Table 15, and those differences will 

support the presentation of the results. 
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Table 15. Data-related features of the Danish source account model and the EU source attribution model. 

 Danish model EU model Comment 

Human data included Data from 2007, 2008 and 2009 Aggregated case-based data from 2007 to 

2009 

No year-specific inferences are possible in the EU-model. 

Source of human data Statens Serum Institute (SSI). ECDC / EFSA after reporting from 

countries. 

Locally produced and reported data have fewer opportunities for 

information loss from the point of collection to the point of storage. 

Danish data in the EU model was reported to ECDC by SSI. 

Travel information Cases with missing information 

modeled according to the 

probabilities observed in the ones 

with information, resulting in 31% 

travel and 69% domestic. 

Cases with missing information assumed to 

be domestic, resulting in 18% travel and 

82% domestic. 

The Danish model assumes that the follows the same distribution as 

the information provided. The EU model assumes that cases not 

referred specifically as travel-related are domestic, mainly because 

some countries had 0% travel information, and it was not possible to 

estimate the proportion of travelers. This assumption is likely to result 

in an underestimation of travel cases in the EU model, as some of the 

not-specified cases would be travel-related. 

Subtyping 

information 

Most isolates serotyped, S. Enteritidis 

and S. Typhimurium phage typed and 

S. Typhimurium tested for 

susceptibility to nine antimicrobials. 

Serovar level used. The serovar distribution 

of cases and samples with missing serovar 

information were modeled based on 

observed distributions in the relevant 

datasets, resulting in a larger uncertainty 

regarding the true serovar distribution. This 

was particularly the case in the human  

datasets. 

Higher level of detailing attributes cases more specifically to the right 

sources, but also leave a relatively higher proportion of cases with 

“unknown source”, as the model requires a “perfect match” between 

subtypes in humans and animal reservoirs. On the other hand, in the 

model with less subtype detailing, cases could be misplaced, as the 

same serovar can be present in different sources, and the source with 

higher prevalence will ”draw” more cases. 

Food/animal sources 

included and origin of 

Salmonella prevalence 

data, 

Domestic: pork, beef, broilers, layers 

and ducks (from national surveillance 

programs). 

Imported: pork, beef, chicken, ducks 

and turkeys (from the case-by-case 

risk assessment program and retail 

monitoring). 

Pigs, broilers, turkeys and layers (from 

EFSA baseline studies or EU-harmonized 

surveillance). Differentiation between 

imported and domestic based on the 

EUROSTAT production and trade data (see 

below). 

The fewer the number of sources included in the model, the more 

likely it is for cases to be attributed to a wrong source. As an example, 

beef is absent from the EU model; however, S. Typhimurium is an 

important serovar in both cattle and pigs, and it is likely that some S. 

Typhimurium cases which were caused be beef are attributed to pigs 

in this model.  Another expected resulting difference of the two 

approaches is that in the Danish modelimported eggs are not included, 

as theyare generally considered to be of low importance, as they are 

mainly used for heat-treated products by the industry and there is 

consequently no monitoring of imported shell eggs. O; in the EU 

model, they enter as a source, where the impact is determined by the 

imported amount and the prevalence in the country of origin.  

Consumption data Domestic and imported amounts of 

each source available in the country, 

with no differentiation between 

countries of origin of imported food. 

Estimated from production, exports and 

imports reported to EUROSTAT. Specific 

amounts originating from each exporting 

country available. 

The use of trade data, allows discrimination among foods originating 

from different countries, particularly when country-specific 

prevalences are available from the BS studies. The use of these data 

bring along some biases and assumptions, as described in the methods 

section. 

Model dimensions Subtype (serovar, phage type, 

resistance pattern), source and year 

Serovar, source, country of human case 

reporting and country of origin of food 

The “country of origin of food” dimension allows the attribution of 

cases to the country of origin of the sources. 
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6.4.1. Overview of results from the two models 

A total of 7,433 human cases of Salmonella were reported in Denmark in the period from 2007 to 

2009. Table 16 shows the number of reported cases attributed to animal reservoirs, international travel and 

outbreaks in each year in the Danish model, as well as the sum of the three years. The most important 

sources of salmonellosis in this period were pork (7.9% domestic and 1.4% imported, resulting in 9.3%), 

table eggs (7.5%) and broilers (4.7%), of which imported chicken (3.8%) was the largest part. Around 30% 

of the total cases reported were estimated to have been acquired abroad, and 16.7% of all cases could not be 

attributed to any source. 

 

Table 16 DK model: Estimated percentage of Salmonella cases attributed to food/animal sources, 

international travel, outbreaks with source unknown and unknown sources, 2007-2009, Denmark (mean and 

95% Credibility Interval). 

Source 2007 2008 2009 2007-2009 

Broilers 0.3 (0.0-1.0) 1.3 (0.7-3.6) 0.7 (0.1-1.8) 0.9 

Imported chicken 1.4 (0.4-2.8) 5.2 (3.3-6.8) 3.7 (2.1-5.3) 3.8 

Pork 7.6 (6.0-9.3) 8.8 (7.6-10.0) 6.5 (3.6-9.7) 7.9 

Imported pork 2.0 (1.0-3.1) 0.5 (0.3-1.9) 1.3 (0.2-2.8) 1.4 

Turkeys - 0 - 0 

Imported turkey 2.0 (0.5-3.5) 2.4 (0.2-4.1)    0.7 (0.1-1.8) 1.9 

Table eggs 12.3 (11.5-13.2) 3.2 (2.5-3.9) 11.0 (8.9-13.2) 7.5 

Beef 0.2 (0.1-0.3) 0.7 (0.4-1.0) 0.7 (0.1-1.6) 0.6 

Imported beef 3.1 (2.2-4.0) 0.3 (0.1-0.7) 1.2 (0.6-1.8) 1.3 

Ducks 0.3 (0.0-0.9) 1.0 (0.1-2.7)   0.6 

Imported duck 1.4 (0.5-2.3) 

 

  0.4 

Travel 32.2 (30.4-31.4) 23.3 (23.1-23.6) 46.3 (44.4-48.2) 30.6 

Unknown source 17.7 (15.1-19.8) 13.1 (11.3-15.0) 23.4 (20.0-26.8) 16.7 

Outbreaks, unknown source 20.9 39.6 4.4 26.4 

TOTAL 2,129 3,656 1,647 7,433 

 

 

In the EU model, 7,461 cases of salmonellosis were reported in Denmark in the period of 2007 to 

2009. After adjusting for underreporting (see section 5.1.2.1.), this resulted in 26,331 cases (Table 17), with 

turkeys as the most important food source of sporadic cases (19.6%), followed by pigs (18.0%), layers 

(10.1%) and broilers (3.5%). When including also non-food sources, most cases were attributed to 

international travel (23.7%). Cases that could not be attributed to any source corresponded to 18.3%, and 

outbreaks with unknown source had 6.8% of cases.   
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Table 17. EU model: Estimated percentage of Salmonella cases attributed to animal reservoirs, international 

travel, outbreaks with source unknown and unknown sources, 2007-2009, Denmark. 

Source Total source percentage
(a)

 Percentage by origin
(b)

 

Broilers 3.5 (0.5-12,5) 0 

Imported broilers 
 

3.5 

Pigs 18.0 (3.2-61.4) 14.7 

Imported pigs 
 

3.3 

Turkeys 19.6 (2.9-69.2) 0 

Imported turkeys 
 

19.6 

Layers 10.1 (2.3-33.1) 1.2 

Imported eggs 
 

8.9 

Travel 23.7 (3.6-83.0) 23.7 

Unknown source 18.3 (2.8-64.0) 18.3 

Outbreaks, unknown 

source 
6.8 6.8 

Total 26,330 26,330 

(a) Results of the EU model. See Appendix A. 

(b) Total source percentage divided based on country “originating” Danish cases. For percentages “originated” from all MSs included 

in the model in the four sources, see Appendix F.  

 

 

Figure 20 shows the attributable percentages to categories divided by domestic or imported source. 

The category “others” contains sources present in the Danish model but not in the EU model (e.g. beef and 

ducks).  
 

 
Figure 20. Attributable fractions of Salmonella cases to domestic and imported animal sources in Denmark 

in the Danish model and in the EU model, 2007-2009. 
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The differences in the proportion of cases attributed to the animal sources between the two models 

result in great part from the differences in the data, categories and model assumptions already described. The 

largest discrepancy is observed in the results for turkeys. Concerning the other sources, although individual 

attributed fractions are different, the order of priority indicated by the results is similar, having pigs as the 

most important, followed by layers and then broilers. The four animal sources and the travel-related cases 

will be addressed in separate in the next section. To help comparing the results of the two models, Tables 18, 

20, 21 and 22 show the overall Salmonella prevalence and the data used for m in the countries estimated to 

be responsible for the cases attributed to the sources. 

The amount of cases attributed to the “unknown” category is affected by the different number of 

sources in the two models and by the higher level of subtyping detail in the DK model (phage types, AMR 

profile). The more sources that are included in the model, the more likely it is for a case to be attributed to 

the right source. At the same time, a more discriminatory level of subtyping makes it more difficult to 

“match” cases to the right sources, resulting in a larger number of cases being directed to “unknown”. In the 

EU-model, due to the less detailed subtyping information, some cases may be wrongly attributed to one of 

the four sources. This is particularly true for the more common serovars, such as S. Typhimurium. This is 

also one of the reasons for the animal sources in general receiving a larger proportion of cases when 

compared to the Danish model. 

The greater part of the difference in the proportion of cases attributed to outbreaks lies in the fact that 

the results of the EU model were adjusted for underreporting, with a UF of 4.4. It was assumed that all 

outbreak-related cases were properly reported, and so outbreak cases were not multiplied by the UF. This 

changes the balance between the proportion of cases attributed to outbreaks and to the other categories, when 

comparing the two models. If the results of the Danish model are multiplied by 4.4 and the proportions are 

re-calculated, cases belonging to outbreaks with an unknown source change from 26.4% to 7.6% of the total, 

which is reasonably more similar to the 6.8% estimated by the EU model. 

6.4.2. International travel 

 The Danish model estimates the proportion of cases with no travel information that are travel-related, 

assuming that these should follow the same proportions as the ones for which that information is available; 

as a consequence, the total cases attributed to travel includes reported and estimated cases. Because no travel 

information was available for some countries, cases with no travel information were by default considered 

domestic in the EU model, whereas a part of these were attributed to travel in the Danish model. In the EU 

model dataset, S. Enteritidis corresponds to 46% of travel cases in Denmark. Due to control activities 

conducted in the country during the last decade, the prevalence of that serovar in food-animals is in general 

low, particularly when compared to other MSs. For that reason, a proportion of these cases were attributed to 

imported foods, particularly imported eggs and broilers, indicating that the serovar distribution in imported 

food is comparable to the serovar distribution in travelers.  

6.4.3. Turkeys 

Both models agree that all cases attributed to this reservoir are related to imported turkey. However, 

the proportion of cases attributed in the EU model is over 10 times the proportion in the Danish model. In 

Table 18, it is evident that the total amount of turkey meat imported by Denmark as considered in the Danish 

model was smaller than in the EU model, resulting in a smaller parcel of cases weighted to this reservoir. 

The data used in the Danish model also shows that the CBC tested samples from the four countries 

responsible for 88% of cases in the EU model (Germany, France, Italy and Poland), which were also the 
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main exporting countries in the period, according to EUROSTAT. This shows that the CBC seems to have a 

good sensitivity, testing samples from countries which both models agree are important. At the same time, in 

the EU model, the use of trade data to estimate the available amount for consumption makes it possible to 

use specific prevalences applied to specific imported amounts, giving a weighted importance to high-

prevalence countries exporting large amounts of food to Denmark.  

Table 18. Comparison of the overall Salmonella prevalence and amount available for consumption in the 

two models and percentage of the number of cases reported in Denmark attributed to turkeys  by the EU 

model 

Exporting  % of Danish cases  EU model  DK model 

country attributed to turkeys  prevalence m  prevalence m 

BE 0.1 10.8 80  N/A N/A 

DE 24.3 7.3 14,102  15.6 N/A 

ES 1.5 39.1 222  N/A N/A 

FR 23.6 9.6 6,021  8.7 N/A 

HU 7.2 62.5 782  N/A N/A 

IE 0.1 22.7 228  N/A N/A 

IT 9.3 20.2 2,968  46.4 N/A 

LT 0.1 4.4 77  N/A N/A 

NL 0.9 9.0 512  N/A N/A 

PL 30.9 17.7 5,695  39.4 N/A 

UK 1.9 25.5 783  N/A N/A 

Total 100.0 - 31,470  18.75 23,687 

 

Looking more closely at Poland, Germany and France, responsible for almost 80% of cases, Table 19 

shows the prevalence of S. Saintpaul, one of the most important turkey serovars (as seen in section 

5.1.2.2.1.), and of S. Enteritidis and S. Typhimurium, the two most important overall. The adjusted number 

of human cases of each of those serovars in Denmark for the period was, respectively, 352, 7,044 and 6,310 

cases.  

Table 19. Prevalence of selected serovars in the four animal sources included in the EU model in Poland 

(PL), Germany (DE) and France (FR) 

Country  Serovar Prevalence (p) 

  

Broilers Pigs Turkeys Layers 

PL S. Saintpaul 0.24 0.00 6.77 0.01 

 

S. Enteritidis 7.16 2.47 0.93 10.11 

 

S. Typhimurium 2.39 1.19 3.04 0.52 

DE S. Saintpaul 0.00 0.00 1.57 0.00 

 

S. Enteritidis 0.00 0.40 0.14 2.50 

 

S. Typhimurium 4.86 9.19 1.82 0.39 

FR S. Saintpaul 0.00 0.09 0.61 0.03 

 

S. Enteritidis 0.24 0.18 1.17 2.18 

 

S. Typhimurium 0.00 7.83 1.47 1.31 
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As observed, the prevalence of S. Saintpaul in Polish turkeys is 4.3 times the observed value for 

Germany, and over 10 times the French prevalence, while it is almost absent in the other three sources in the 

three countries. But more importantly, Poland is the only country in which the prevalence of S. Typhimurium 

is higher in turkeys than in any other source, suggesting that, if phage typing data or more detailed subtyping 

methods were available, part of the cases attributed to turkeys might have been attributed to other sources 

(for instance, pigs). Given the large number of observed S. Typhimurium cases (6,310), this results in a large 

difference, suggesting that the EU model is likely to have overestimated the importance of this source, 

particularly the contribution from Poland, pointed as the main contributor of turkey-originated cases (31%).  

 

6.4.3. Broilers 

When comparing results for broilers (Figure 20), one immediately visible difference is the absence of 

cases attributed to domestic broilers in the EU model. This is readily explained by the different data used; in 

the BS, the prevalence of Salmonella in broiler carcasses in Denmark was zero, while the surveillance and 

monitoring data used in the Danish model had 2.1% positive samples.  The parcel attributed to (imported) 

broilers in the Danish model is also larger than in the EU model. This can probably be explained by the 

lower level of subtyping detail in the EU model. As prevalences for S. Enteritidis were consistently higher in 

layers than in broilers, without better discriminatory features a parcel of S. Enteritidis broiler cases are likely 

to have been attributed to layers. As 27% of sporadic human cases in Denmark (7,044 out of 26,330) were 

caused by this serovar, this parcel corresponds to a large proportion of total cases. In addition, the Danish 

model includes data from meat imported from non-EU countries, such as Brazil, Chile and Argentina. The 

EU model does not take those countries into consideration, which could result in non-EU broiler cases being 

“forced” into the available countries in this model (Table 20). As an extra note, according to the 

EUROSTAT data the UK exports a large amount of broiler meat to Denmark, but no positive samples from 

this country were reported in the CBC. 
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Table 20. Comparison of the overall Salmonella prevalence and amount available for consumption in the 

two models and percentage of the number of cases reported in Denmark attributed to broilers  by the EU 

model 

Exporting  % of Danish cases 

attributed 

EU model 

 

 DK model 

 country attributed to broilers  prevalence m  prevalence m 

AR
(a)

 - N/A N/A  6.7 N/A 

BE 9.4 20.3 7,335  8.4 N/A 

BR
(a)

 - N/A N/A  12.0 N/A 

CZ 0.4 5.5 416  N/A N/A 

DE 16.5 17.6 26,935  9.2 N/A 

ES 7.2 14.9 2,418  N/A N/A 

FR 2.1 7.6 8,644  10.0 N/A 

GR 0.1 14.8 70  N/A N/A 

HU 9.7 85.7 1,442  N/A N/A 

IE 2.0 9.9 218  N/A N/A 

IT 0.4 16.8 894  N/A N/A 

LT 0.5 6.9 2,299  6.6 N/A 

LV 0.1 4.9 27  N/A N/A 

NL 2.6 10.0 23,773  42.9 N/A 

PL 30.2 25.5 6,597  3.6 N/A 

PT 7.0 11.2 1,633  N/A N/A 

SE 0.4 0.2 71,499  4.9 N/A 

SI 1.0 1.7 3,426  N/A N/A 

SK 0.3 21.6 51  N/A N/A 

UK 9.9 3.5 8,287  N/A N/A 

Total 100.0 - 165,964  8.6 93,191 

(a)  Non-EU countries from where Denmark has imported chicken meat 

 

 

6.4.4. Pigs 

Pigs present a particular situation, in which cases attributed to imported sources only represent a small 

fraction of the total. In the EU model, 81.5% of cases attributed to this source are estimated to come from 

Denmark (Table 21), and these results are consistent with the fact that 84.9% of the pork fraction in the 

Danish model were attributed to domestic pork (Table 16). The consistency between the two models is 

further demonstrated as the overall prevalences in the two datasets are reasonably similar in the two largest 

contributors besides Denmark (Germany and Spain) (Table 21). This suggests that the difference in 

attributable fractions is more likely due to the differences in the total imported amount and the difference in 

discriminatory power, which in this case plays an important role: S. Typhimurium, the most important pig 

serovar, is one of the main serovars in all other sources, being also responsible for the second largest amount 

of human cases. Without better discriminatory power, a large parcel S. Typhimurium cases is attributed to 

this source in the EU model, which corresponds to a large parcel of total cases. In the Danish model, phage 

typing data allows better differentiation among sources, resulting in less cases being directed to this source.   
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Table 21. Comparison of the overall Salmonella prevalence and amount available for consumption in the 

two models and percentage of the number of cases reported in Denmark attributed to pigs  by the EU model 

Exporting % of Danish cases EU model  DK model 

country attributed to pigs prevalence m  prevalence m 

BE 0.6 13.0 11,840  N/A N/A 

DE 6.8 12.7 123,767  10.0 N/A 

DK 81.5 8.0 3,013,472  3.1 N/A 

ES 5.9 30.7 62,648  33.3 N/A 

FR 1.1 18.5 22,896  29.6 N/A 

HU 0.3 11.6 3,611  N/A N/A 

IE 0.6 15.4 10,592  N/A N/A 

IT 0.1 16.4 4,355  N/A N/A 

NL 1.4 8.5 46,638  16.7 N/A 

PL 0.7 0.7 11,069  N/A N/A 

UK 1.0 1.0 12,969  31.8 N/A 

Total 100.0 - 3,323,857  11.9 230,440 

 

6.4.5. Layers / Eggs 

The resulting parcels attributed to layers/eggs are very similar in the two models (especially if looking 

at 2007 and 2009  in Table 19, as an outbreak of unknown source in 2008 reduced the relative importance of 

other sources). However, in the EU model 88% of cases attributed to layers come from imported eggs (Table 

22), while the Danish model only considers domestic eggs, so the similarities do not come from consistency 

between models, as happened for pigs. Salmonella contribution from imported eggs is not considered 

important in Denmark, as it is believed that most of the imported eggs are not sold as shell eggs, but instead 

used in heat-treated products. Whether this assumption holds is not known.  

As happened with turkeys, the specific serovar prevalences in Table 23 provide an indication of the 

reasons for the discrepancy between models. The prevalence of S. Enteritidis, the main serovar in layers, is 

50 times higher in Poland than in Denmark, which also has lower prevalences of the other two important 

layer serovars, S. Typhimurium and S. Infantis. Also, specific phage types of S. Enteritidis, like  PT 21, PT 4 

and PT 6, are most frequently related to travel in Denmark. This information cannot be taken into 

consideration in the EU model, as phage type information is not available. The model, therefore, tends to 

allocate those cases to countries from which Denmark imports eggs with high S. Enteritidis prevalence. As 

mentioned earlier, S. Enteritidis and S. Typhimurium are the most observed serovars overall, so parcels of 

cases attributed to any of them result in high attributed proportions at country level.   
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Table 22. Comparison of the overall Salmonella prevalence and amount available for consumption in the 

two models and percentage of the number of cases reported in Denmark attributed to layers  by the EU 

model 

Exporting % of cases Danish cases  EU model  DK model 

country attributed to layers  prevalence m  prevalence m 

AT 0.1 2.5 341  N/A N/A 

BE 0.9 11.7 1,060  N/A N/A 

CZ 0.3 8.9 167  N/A N/A 

DE 4.8 3.5 8,999  N/A N/A 

DK 11.9 0.6 200,645  5.42 82,594 

ES 5.8 44.5 1,080  N/A N/A 

FR 0.1 6.1 121  N/A N/A 

LV 2.3 20.3 829  N/A N/A 

NL 4.1 2.6 7,595  N/A N/A 

PL 69.6 12.5 32,450  N/A N/A 

SE 0.1 0.7 2,763  N/A N/A 

Total 100.0 - 256,050  N/A 82,594 

 

 

Table 23. Prevalence of selected serovars in the four animal sources included in the EU model in Denmark 

(DK), Poland (PL), Spain (ES), Germany (DE) and the Netherlands (NL) 

Country Serovar Prevalence (p) 

  

Broilers Pigs Turkeys Layers 

DK S. Enteritidis 0.00 0.00 0.00 0.20 

 S. Typhimurium 0.00 4.84 0.00 0.20 

 S. Infantis 0.00 0.91 0.00 0.00 

PL S. Enteritidis 7.16 2.47 0.93 10.11 

 

S. Typhimurium 2.39 1.19 3.04 0.52 

 

S. Infantis 6.21 0.26 1.24 0.90 

ES S. Enteritidis 5.40 0.37 0.58 24.03 

 S. Typhimurium 1.29 15.95 1.62 2.82 

 S. Infantis 0.51 0.00 0.00 6.43 

DE S. Enteritidis 0.00 0.40 0.14 2.50 

 

S. Typhimurium 4.86 9.19 1.82 0.39 

 

S. Infantis 1.39 0.32 0.00 0.17 

NL S. Enteritidis 0.00 0.00 0.00 2.60 

 

S. Typhimurium 0.48 5.54 0.70 0.04 

 

S. Infantis 0.72 0.10 0.00 0.00 
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Part II: 

An alternative approach for source attribution in 

countries with missing data 
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7. SOURCE ATTRIBUTION BY EXPERT ELICITATION BASED ON CLUSTER ANALYSIS OF 

NON-HEALTH VARIABLES 

7.1. Background 

The Hald model (Hald et al., 2004) and its variations (Pires and Hald, 2010; Toyofuku et al., 2011; 

Whalström et al., 2011; Guo et al., 2011) are among the most widespread microbial subtyping-based 

methods for source attribution of Salmonella. As shown in section 5 of this thesis, these methods require a 

large amount of good-quality data, which are available from the Danish surveillance system and, up to a 

point, from datasets maintained by EUROSTAT, studies published by EFSA and national harmonized 

surveillance systems. These data requirements reduce the applicability of the models, as nationally 

representative and internationally-comparable studies on the baseline prevalence of Salmonella in production 

animals, human data from laboratory-based integrated surveillance systems and trade data are only available 

from a limited number of countries. However, in places where those data are not present, other types of data 

may be available from public sources such as FAO, UNDP or published papers which could, when analyzed 

by an appropriate group of experts, provide a way to approximate the results of source attribution models. 

Expert elicitations can be used to estimate the proportion of disease attributed to food sources (Batz et al., 

2005). These opinions serve to supplement data collection, in a similar way as meta-analyses and systematic 

reviews supplement primary research. Expert elicitation can be used to assess probability or risk ranking 

based on personal experiences and/or relevant information, but where direct measurements are not possible 

(Hoffmann et al., 2007a). This has been done for source attribution in several countries, such as the United 

States (Hoffmann et al., 2007a), the Netherlands (Havelaar et al., 2008), New Zealand (Lake et al., 2010) and 

Canada (Davidson et al., 2011). 

7.2. Objective 

The objective of this part of the thesis was to propose and evaluate an alternative approach for source 

attribution based on expert elicitation, using non-health indicators as information to estimate results for 

countries where the data on Salmonella required for the Bayesian model are not available. The chosen 

approach was to provide a panel of experts with sets of countries grouped in accordance wih social, 

economic, environmental and dietary characteristics, as well as with sets of countries grouped according to 

the results of the EU source attribution model presented in Part I of this thesis. The experts were then asked 

to provide source attribution estimates for countries not included in the EU model. The main assumption of 

this approach is that the parcels of human salmonellosis attributed to different animal sources indirectly 

reflect the social, economic, environmental and dietary characteristics of a country. The knowledge of 

experts  may then be used to relate A) countries for which attribution estimates have been obtained by the 

microbial subtyping approach in Part I with B) countries for which the only data available are those that 

might be indirectly associated with the sources of human salmonellosis, e.g. the data collected through FAO, 

UNDP and climate data.  

7.3. Methods 

7.3.1. Choosing non-Salmonella variables 

Although representative surveys on the presence of Salmonella in livestock are not available from 

most countries in the world, it is known that the introduction and transmission of pathogens in animals of the 

food chain depend largely on the type of production system, including type of housing and animal density, 

which are, by turn, influenced by local environmental patterns (average temperatures, rainfall, etc) 
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(FAO/OIE, 2009). Production systems are also affected by livestock production/demand relationships, which 

are largely influenced by social and economic characteristics of the country (FAO, 1995). As an example, the 

level of economic growth of a country is a key factor determining the demand for livestock products, as it 

brings an increase in disposable income. This is normally followed by an increase in migration to urban 

areas, reducing the size of the population involved in the primary production, at the same time as it increases 

the number of consumers. In countries where this has happened, production systems had to be adapted and 

become more intensive (FAO, 1995). So, from a wider point of view, social and economic characteristcs of a 

population can provide indirect information about the presence of pathogens, including Salmonela, in 

production animals in a country. 

When it comes to the presence and survival of Salmonella during processing and consumption, 

climatic conditions can influence the viability, stability and growth rates in the environment, as high 

temperatures increase the replication cycles of most food- and waterborne bacterial pathogens (Semenza et 

al., 2012). Salmonella, in particular, has optimal growth temperature around 37 degrees Celsius, and in the 

absence of other preservation methods, temperature is expected to influence its growth at various points in 

the food chain, particularly inside the household (Adams and Moss, 1995; Kovats et al., 2004). Furthermore, 

a linear association between temperature and the number of cases of salmonellosis reported nationally has 

been observed in the Netherlands, England and Wales, Switzerland, Spain and the Czech Republic, normally 

with the effect being observed one week after the temperature increase (Kovats et al., 2004). 

Still concerning Salmonella at the point of consumption (i.e. in the household), food-related behaviors 

are complex and determined by the interplay of many factors, among which education, income, ethnicity and 

food availability (De Irala-Estevez, 2000). Such behaviors include food item ingestion patterns, as well as 

food preparation habits, which are key in preventing or allowing the survival of a pathogen in the household. 

Consumption habits are also expected to have an influence on which subtypes will be normally found in a 

population, as reservoir-specific subtypes will be absent if those reservoirs are not used as food, or their 

presence will vary depending on how each of those reservoirs are prepared.   

Finally, countries have different foodborne disease surveillance systems, resulting in large variations 

in the level of reporting and the surveillance and monitoring activities performed. Factors that may 

contribute to the variations include economic development, access to health care, public health infrastructure 

and demographic features (rural/urban, literacy, age, religion, food preferences), among others (WHO, 

2002). Figure 21 illustrates factors that affect the presence, survival and transmission of Salmonella (in blue) 

in different steps of the path (in gray) from the production of a contaminated animal reservoir at farm level 

until the reporting of a human case of foodborne salmonellosis. The figure also shows non-health variables 

that may reflect or influence those factors and which are publically available from the United Nations 

Development Program (UNDP, in pink), the United Nations Food and Agriculture Organization (FAO, in 

green), EFSA (in red) or published studies (in purple). 
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Figure 21. Non-health variables with potential to be used as tools for source attribution of Salmonella using expert elicitation.
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Based on the above, the chosen variables were: 

 relative proportions of consumption of eggs, poultry meat, pork, beef, sheep and goat meat, fish, 

seafood, raw animal fats and “other meats”; 

 consumption of poultry meat (g/person/day); 

 consumption of pork (g/person/day); 

 consumption of eggs (g/person/day); 

 gross domestic product (GDP) per capita in U.S. dollars; 

 percentage of the population which is economically active; 

 percentage of the population below the national poverty line; 

 literacy rate (%);  

 mean years of schooling among adults; 

 life expectancy in years; 

 mortality under five years of age (per 1000 births); 

 percentage of country territory used for agriculture; 

 percentage of economically active population working full-time in agriculture;  

 number of farms per square kilometer of agricultural land; 

 number of individuals employed full-time in agriculture per farm unit; 

 chickens per farm; 

 pigs per farm; 

 turkeys per farm;  

 climate information 

 

7.3.2. Variables derived from results of the EU model  

Besides the non-Salmonella information, the countries which were included in the EU model were also 

clustered according to the results presented in Part I. Variables derived form those results were: 

 Salmonella incidence attributable to all sources;  

 Salmonella incidence attributable to broilers; 

 Salmonella incidence attributable to pigs; 

 Salmonella incidence attributable to turkeys; 

 Salmonella incidence attributable to layers; 

 attributable fraction of human Salmonella cases to all sources combined;  
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 relative proportion of reported S. Enteritidis, S. Typhimurium and “Other serovars” in humans; 

 relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in broilers; 

 relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in pigs; 

 relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in turkeys; 

 relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in layers; 

7.3.3.Grouping of countries using cluster analysis 

Cluster analysis was used to identify similarities among countries in relation to the chosen variables. 

Hierarchical cluster analysis starts with all observations in a dataset belonging to the same cluster, and 

systematically creates new clusters, by separating observations which are more similar among themselves 

than to the others in relation to a set of variables. The procedure can be performed progressively until each 

observation constitutes its own cluster. 

In this study, an “average subject” from each cluster was chosen as the centroid to be compared with 

other clusters, and the squared Euclidean distance between observations within the same cluster was used as 

similarity measure. The more similar the subjects, the smaller the distance between them (and consequently, 

the smaller the squared Euclidean distance), the same principle applying to less-similar subjects and larger 

distances. Variables measured in different scales which were used in the same set were standardized to fit a 

distribution with mean=0 and standard deviation=1. It is necessary to standardize the values before running 

the analysis, otherwise variables that differ thousands of units from each other (e.g. country territory in 

squared kilometers) will drive the cluster construction, annulling the influence of variables that vary in a 

smaller scale (e.g. percentages). 

The resulting process can be plotted as a dendrogram (or “tree”) with the distance between clusters on 

the vertical axis. Although the whole hierarchical structure can be visualized in this way, the best cluster 

solution was chosen for each set of variables to be presented. This choice was based on an evaluation of the 

clustering process using a) the root-mean-square deviation (RMSSTD) of each new cluster formed, b) the 

semipartial R-squared (SPR), c) the R-squared (RS) and d) the distance between two clusters (CD). These 

measures provide a statistical reference to evaluate the homogeneity of a new cluster formed and the 

heterogeneity among the current group of clusters in each step, indicating the more “natural” number of 

clusters for a given set of observations. Cluster analyses methodology and goodness-of-fit measures are 

detailed in Sharma (1996).  

7.3.4. Expert elicitation 

Countries included in the study were Austria, Bulgaria, Czech Republic, Cyprus, Denmark, Estonia, 

Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the 

Netherlands, Norway, Poland, Portugal, Slovenia, Slovakia, Spain, Sweden and the United Kingdom. 

Experts were asked to provide estimates of the percentage of cases of human salmonellosis in Bulgaria, 

Norway and Romania which originated from the broiler, pig, laying hen and turkey reservoir, travel and 

“unknown or other sources”,  according to how countries grouped based on the “indirect Salmonella 

indicators” and on the results of the EU microbial subtyping model. The point of attribution was the animal 

reservoir, as consequence of the method used and in line with the original study in Part I of this thesis. The 

steps for an expert elicitation process as described by Hoffmann et al. (2007b) were followed. 
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7.3.4.1. Determining the size of the expert panel 

 A panel of 12 experts was selected. Because the aim of the study was to pilot the approach, the 

number of experts was found to be sufficient. Also, when the research question is narrowly defined in terms 

of discipline or expertise, the elicitation can rely on a small panel (Cooke and Goossens, 2004). 

7.3.4.2. Choosing the model of analysis and/or aggregation 

No weighting was used in this pilot, as the panel was considered small and relatively homogeneous in 

area of expertise. A set of validity checks based on the protocol by Hoffmann et al. (2007b) was used to 

evaluate the quality and homogeneity of the information provided by the panel. These included 1) variability 

in expert judgment; 2) the level of agreement between the experts’ assessments and prior estimates based on 

primary data; 3) individual experts’ uncertainty about their own assessments; 4) variability in individual 

experts’ uncertainty about their own best estimates. Although the statistical analysis of those check points 

was not possible in the present study because the original protocol was developed for large panels, the 

concepts behind them were applied when evaluating the experts’ guesses.  Variability in judgment, 

agreement with other experts and individual uncertainty were evaluated visually using box plots, after 

analyzing the estimates as described in section 7.3.4.7. Agreement of panel and individual assessments based 

on primary data was a challenge, as the objective was to obtain estimates for which there are no other results. 

For that reason, the Czech Republic was included as one of the countries under study and used as a 

validation reference, with expert guesses for this country being compared with the estimates from the EU 

model.  This country was arbitrarily chosen because members of the panel could have already read the 

original results published as part of the contract with EFSA (Pires et al., 2011a), and among the first choices 

for the panel there were no experts originating from the Czech Republic, reducing the chances of them 

remembering and looking up those results. No other countries were added as validation reference, as the 

number of countries available for clustering was considered already too small, and this would reduce this 

number even further. 

Experts’ estimates of attributable proportions were fit as theoretical Beta Pert distributions, using the 

point estimates as mode and the limits of the uncertainty range as maximum and minimum. This distribution 

was chosen as it was specifically designed for modeling expert estimates, and it is more sensitive to the most 

likely value than to the minimum and maximum values, making it a better choice than, for instance, the 

Triangle distribution, which is the other commonly used distribution for this kind of assessment (Vose 

Software, 2007. Reference Number: M-M0361-A). These distributions were then used to generate 

aggregated panel estimates through the following process: experts were numbered 1 to 7, and a random 

number generator was set up to draw 10,000 values between 1 and 7. With each drawn number, a random 

sample was taken from the distribution derived from the guess of the corresponding expert, creating a joint 

distribution which included the uncertainty of each one. The mean of the resulting distribution for each 

source was used as the final guess from the panel. Original estimates and intervals were stored using 

Microsoft Excel version 14.0.61112.5000 (32-bit) ©Microsoft Corporation. Simulations were run in 

ModelRisk Standard version 4.3.1.1. © Vose Software 2011. 

7.3.4.3. Choosing the mode of elicitation  

Typically, expert elicitations use group interaction or one-on-one interviews to elicit expert judgment 

(Cook, 1991 apud Hoffmann et al., 2007b). One-on-one assessments, by turn, are generally conducted 

through in-depth interviews or a written elicitation instrument (Hoffmann et al., 2007a). In this study, 

individual assessments using a written instrument were chosen as the mode of elicitation.  
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7.3.4.4. Developing the elicitation survey instrument 

The prepared materials provided the experts with the results of the EU model, the data used to obtain 

those results and other data intended to design “country profiles”, which allowed comparisons among 

countries to include those without enough data for the microbial subtyping approach. The task was presented 

in an instrument divided in two parts, namely the instructions/questionnaire and the information sheets. 

7.3.4.4.1. Instructions and questions 

Each expert received, along with the information sheets, a set of instructions and study objectives, as 

well as a written elicitation instrument under the form of a blank table with the countries and sources, as seen 

in Figure 22. The material also included five questions intended to collect the experts’ opinion on the validity 

and utility of the data used and the method in general. The panel was asked to analyse how countries without 

attribution results related to countries for which those results were available, regarding a set of economic, 

social, agricultural and climate data, and also information on Salmonella incidences and serovar proportions 

in humans and animals from the original EU model dataset, when those were available. Based on that 

analysis, they were asked to provide their estimates for the fraction of cases attributable to broilers, pigs, 

layers, turkeys, travel and unknown sources in the Czech Republic, Bulgaria, Romania and Norway. 

Intervals containing the minimum and maximum values for their estimates were also requested, as those 

intervals allow experts to express their uncertainty and also reduce the respondent’s fatigue (Havelaar et al., 

2007). Finally, the experts were asked to answer five questions evaluating the usefulness and applicability of 

the approach. In order to evaluate the attribution results, estimates for the Czech Republic were also asked 

from the panel, so values can be compared with the ones obtained by the microbial subtyping approach for 

that country. The full elicitation instrument is presented in Appendix G. 

Figure 22: Tables used to collect source attribution estimates from the expert panel. 

 

2 - Fill in the attributable fractions (%) you estimate for each source in Bulgaria, the Czech 

Republic, Norway and Romania, adding a range for your answer. If not enough information was 

provided for an estimate, write “NP” (for “not possible”) in the corresponding field. 

Source Czech Republic Bulgaria 

 % Range % Range 

Broilers       

Pigs       

Turkeys       

Layers       

Travel       

Unknown / other reservoirs       

       

Source Romania Norway 

 % Range % Interval range 

Broilers       

Pigs       

Turkeys       

Layers       

Travel       

Unknown / other reservoirs       
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7.3.4.4.2. Information sheets 

Information sheets were prepared using the results of the cluster analyses. In total, 27 information 

sheets were developed, of which the first three were instructions on how to read and interpret the 

dendrograms and the tables. The remaining sheets can be classified in nine major groups, which contain 

sheets with resulting clusters for one variable, as well as multi-variable sheets, maps, graphs or excel 

spreadsheets.  A Pearson’s correlation analysis was run among the variables included in each group, to assess 

if any of them would have a significant influence on the others. A correlation coefficient lower than 80% was 

found for all analyses, and so it was considered that the variables could be included in the planned clustering 

groups. The main groups and their composition were as it follows: 

1. Source attribution outcomes. This group contains results of the source attribution approach based on 

microbial subtyping in 24 EU countries presented in section 6, and should be used as a reference to 

estimate attributable fractions to animal reservoirs in countries without attribution studies. 

Salmonella data used for humans, broilers, turkeys, layers and pigs were the same as described in 

section 5.1.2.2. Human incidences were corrected for underreporting with the use of underreporting 

factors (Havelaar, 2012). The incidences refer to a period of three years (2007-2009), and are 

presented in cases/100,000. Although the percentage of travel-related cases is shown in the bar 

graph, it was not included in the cluster analysis, as differences between countries were too large and 

would obscure the importance of the contribution of animal reservoirs. Sheets included were: 

a. Salmonella incidence attributable to all sources (overview table); 

b. Salmonella incidence attributable to broilers (table + dendrogram); 

c. Salmonella incidence attributable to pigs (table + dendrogram); 

d. Salmonella incidence attributable to turkeys (table + dendrogram); 

e. Salmonella incidence attributable to layers (table + dendrogram); 

f. attributable fraction of human Salmonella cases to all sources combined (overview table);  

g. attributable fraction of human Salmonella cases to all sources combined (dendrogram); 

h. cumulative attributable fractions bar graph; 

2. Relative proportions of S. Enteritids, S. Typhimurium and “Other serovars” in humans and animal 

sources in each country (EU model dataset) (5 sheets):   

a. relative proportion of reported S. Enteritidis, S. Typhimurium and “Other serovars” in humans; 

b. relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in broilers; 

c. relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in pigs; 

d. relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in turkeys; 

e. relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in layers; 

3. Food consumption information (FAO, 2003) (4 sheets): 

a. relative proportions of consumption of eggs, poultry meat, pork, beef, sheep and goat meat, fish, 

seafood, raw animal fats and “other meats”; 

b. consumption of poultry meat (g/person/day); 
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c. consumption of pork (g/person/day); 

d. consumption of eggs (g/person/day); 

4. Economic indicators (UNDP, 2011). This group contains one sheet in which countries were 

clustered according to three variables: 

a. gross domestic product (GDP) per capita in U.S. dollars; 

b. percentage of the population which is economically active; 

c. percentage of the population below the national poverty line; 

5. Non-economic human development indicators (UNDP, 2011). This group contains one sheet in 

which countries were clustered according to four variables: 

a. literacy rate (%);  

b. mean years of schooling among adults; 

c. life expectancy in years; 

d. mortality under five years of age (per 1000 births); 

6. Agriculture and land usage characteristics (FAO, 2011). This group contains one sheet in which 

countries were clustered according to four variables:  

a. percentage of country territory used for agriculture; 

b. percentage of economically active population working full-time in agriculture;  

c. number of farms per square kilometer of agricultural land; 

d. number of individuals employed full time in agriculture per farm unit; 

7. Density of animal production (FAO, 2011). This group contains one sheet in which countries were 

clustered according to three variables together:  

a. chickens per farm; 

b. pigs per farm; 

c. turkeys per farm; 

8. Climate data. This sheet contains a map of Europe showing Köppen-Geiger climate zones as 

updated by Peel et al. (2007), as well as a table extracted from the original article with a description 

of Köppen climate symbols and defining criteria. No cluster analysis was performed, as national 

borders and climate zones do not always coincide. 

9. Cluster results summary (Excel file). This group contains “country X country” matrices based on the 

best solution for each set of variables, showing: 

a. in which information sheets each two countries belonged in the same cluster; 

b. the probability that two countries belonged in the same cluster in the study, calculated by 

dividing the number of times they were clustered by the number of times they could be clustered, 

as not every country was present in every analysis. 
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The origin of the data for each analysis and the construction of composed variables, as well as the 

demonstration and information sheets, are presented in Appendices H and I, respectively. The full set of 

information sheets is available upon request. 

7.3.4.5. Identifying the expert pool 

Twelve experts were selected from three institutions involved in public health and foodborne diseases, 

based on availability and on expertise in risk modeling and epidemiology. The panel was balanced in terms 

of gender, with five males and seven females. Six experts were Danish, three from the Netherlands, one from 

Sweden, one from Portugal and one from Brazil. The research institutions were located in Denmark, the 

Netherlands and the United States. Each member was approached personally or by email and invited to 

participate.  

7.3.4.6. Administering the elicitation survey 

Upon acceptance to take part in the study, an email containing the study objectives and general 

approach was sent with the materials for the elicitation as an attachment. 

7.3.4.7. Analyzing the survey results 

Experts’ guesses of the attributable fraction of salmonellosis cases to each source were plotted to 

compare the most likely values and uncertainty ranges among experts, and those who were consistently 

different from the rest of the panel were excluded. Individual Czech Republic estimates and aggregated panel 

estimates for the Czech Republic were also compared against reference values from the EU model to 

evaluate how accurate they were, and a Proportionaliry Similarity Index was calculated following the same 

methodology described for the trade data, to compare the order of priority among sources between the results 

of the panel and those obtained by the microbial subtyping approach. 

7.4. Results 

Estimates were received from seven out of 12 experts. One expert did not consider the information 

provided enough to give estimates for Romania. Results referring to the Czech Republic will be presented 

first in separate, as they are used as reference to evaluate the quality of the elicitation. 

7.4.1. Czech Republic  

Although the values were different from the EU model (Tables 24 and 25), all experts maintained the 

same order of priority among animal sources as in the reference, namely layers, pigs, broilers and turkeys. 

Travel, however, was identified as a less important source than broilers by experts 1, 5, and 6, which changes 

the dynamic when considering all types of known sources. The “Unknown/other reservoirs” category shows 

the largest differences when comparing with the reference results, as in practical terms it became an 

uncertainty depository, where parcels not distributed among known sources were allocated.  

The relative estimated proportions among animal sources with the uncertainty range (minimum and 

maximum possible values) for each expert are better visualized in Figures 23a to 23d. Concerning the 

evaluation of the elicitation quality (section 7.3.3.1), the additional visualization of the plots for Bulgaria, 

Norway and Romania (Appendix K) shows that experts were reasonably consistent about the sources of 

which they were more or less certain in all four countries, and concordance among experts was also 

considered good, except for experts 2 and 7. Due to the frequent discordance between Expert 7 and the panel 
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or the reference values, and to the large individual uncertainty of Expert 2, they were excluded, as it was 

considered that their guesses reduced the quality of the joint estimates further from the reference values. This 

is confirmed in Figure 24, where the joint estimates for the full panel (seven experts) and the filtered panel 

(five experts) for the animal sources are plotted along with the reference values.  

Table 24. Estimated fractions of cases attributed to different sources  in the Czech Republic from the EU 

model. 

EU model Mean 2.50% 97.50% 

Broilers 0.1 0 0.2 

Pigs 10.9 10.2 11.5 

Turkeys 1.7 1.4 2.1 

Layers 83.9 82.8 85 

Travel 1.7 - - 

Unknown/Other reservoirs 0.8 0.0 1.8 
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Table 25. Estimated proportion of salmonellosis cases estimated by each expert with minimum and 

maximum possible values uncertainty range) for the Czech Republic.  

Respondant Estimate Minimum Maximum 

Expert1   

Broilers 1 0.1 3 

Pigs 12 9 18 

Turkeys 1 0.1 4 

Layers 70 5.5 85 

Travel 2 0.1 5 

Unknown/Other reservoirs 14 5 20 

Expert2 

   Broilers 4 0 40 

Pigs 23 8 74 

Turkeys 5 0 15 

Layers 47 2 83 

Travel 5 0 30 

Unknown/Other reservoirs 16 4 38 

Expert3 

   Broilers 5 0 15 

Pigs 20 10 30 

Turkeys 5 0 15 

Layers 50 30 70 

Travel 5 0 15 

Unknown/Other reservoirs 15 5 30 

Expert4 

   Broilers 0.5 0 1 

Pigs 15 5 18.6 

Turkeys 3 2 3.1 

Layers 55 25 76.1 

Travel 5 5 5 

Unknown/Other reservoirs 21.5 20 23 

Expert5 

   Broilers 2 0 10 

Pigs 10 5 20 

Turkeys 1 0 5 

Layers 75 60 85 

Travel 1 0 3 

Unknown/Other reservoirs 11 0 15 

Expert6 

   Broilers 5 0 10 

Pigs 25 15 40 

Turkeys 5 2 10 

Layers 50 30 65 

Travel 1 0 3 

Unknown/Other reservoirs 14 5 40 

Expert7 

   Broilers 10 4 20 

Pigs 30 20 40 

Turkeys 5 2 10 

Layers 35 20 50 

Travel 5 2 10 

Unknown/Other reservoirs 15 8 20 
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The joint estimates for the Czech Republic are shown in Table 26. As also found for the individual 

estimates, the proportions attributed to each source by the filtered panel were numerically different from the 

ones estimated by the EU model. When comparing the proportions attributed among sources by the two 

approaches, 73.8% similarity was observed for the results including the “Unknown” category, and 83.5% 

without it, showing that the elicited estimates for this country are in good agreement with the ones obtained 

by the microbial subtyping approach. 

Table 26: Joint panel estimates for all sources in the Czech Republic. 

Source Filtered panel Full panel 

 

Mean 95% CI Mean 95% CI 

Broilers 3.1 0.3 8.2 5.1 0.4 14.3 

Pigs 16.6 8.5 29.0 20.4 9.2 36.0 

Turkeys 3.4 0.5 8.1 4.0 0.6 8.7 

Layers 57.8 38.5 79.0 52.6 29.0 77.9 

Travel 3.1 0.5 7.9 4.1 0.6 10.5 

Unknown/Other reservoirs 15.4 7.3 22.9 15.8 7.9 24.3 
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Figures 23a to 23d. Individual expert guesses (most likely value, minimum and maximum) plotted against 

results from the EU model (mean, standard deviation) in the Czech Republic.
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Figure 24. Joint-estimate distributions from the full and filtered panels plotted against results from the EU model in the Czech Republic.



85 

 

7.4.2. Bulgaria, Norway and Romania 

Individual estimates received and the corresponding plots for Bulgaria, Norway and Romania are 

shown in Appendices J and K.  It was assumed that the same quality of estimates observed for the Czech 

Republic, as well as the filtering of Experts 2 and 7, could be extrapolated to the other countries. This was 

done because the behavior of the experts appeared to be reasonably consistent throughout the elicitation, as 

seen on Appendix K. Final panel estimates for Bulgaria, Norway and Romania are shown in Table 27, and 

the box plots for those values are shown in Appendices L1, L2 and L3.  

Table 27: Joint panel estimates for all sources in Bulgaria, Norway and Romania. 

Country Source Filtered panel Full panel 

  

Mean 95% CI Mean 95% CI 

B
u

lg
a

ri
a
 

Broilers 2.6 0.5 7.9 3.5 0.6 9.6 

Pigs 10.9 4.6 19.9 14.1 4.9 35.8 

Turkeys 1.1 0.0 2.7 2.6 0.1 8.9 

Layers 73.8 51.8 84.9 66.7 35.0 84.1 

Travel 1.7 0.2 3.7 3.6 0.3 10.2 

Unknown/Other reservoirs 9.4 3.9 15.9 12.2 4.4 26.2 

N
o
rw

a
y
 

Broilers 0.9 0.3 1.8 1.8 0.3 6.3 

Pigs 4.6 2.3 7.5 6.2 2.5 11.8 

Turkeys 1.6 0.5 2.7 6.1 0.5 37.0 

Layers 3.0 1.3 5.8 4.1 1.4 8.7 

Travel 80.1 74.7 85.3 72.2 23.4 84.8 

Unknown/Other reservoirs 10.6 6.4 15.2 11.3 4.0 22.4 

R
o
m

a
n

ia
 

Broilers 2.9 0.5 8.0 5.4 0.6 18.8 

Pigs 15.6 4.6 27.5 15.5 0.0 34.2 

Turkeys 2.2 0.1 7.7 2.6 0.0 9.4 

Layers 64.8 44.4 81.5 51.7 0.0 81.0 

Travel 1.8 0.4 3.9 2.4 0.0 9.8 

Unknown/Other reservoirs 12.2 4.1 21.9 11.6 0.0 23.8 

 

7.4.3. Evaluation of the method by the experts 

To better evaluate the method, experts were asked about how they approached the given task and what 

kind of logical thinking guided their working process. Three basic “attacking the problem” tactics were 

registered by the experts: 

1) thinking of the process in a risk assessment or statistical source attribution point of view, keeping in 

mind an equation of a known model and trying to use information from surrogate countries to 

approximate each component of the equation and estimate results; 

2) trying to determine one “surrogate country” for each of the ones under study and adapting their 

attribution results according to differences observed, for example, in food consumption patterns;  

3) trying to determine one “surrogate country” for each of the ones under study and use the same 

attribution results;  
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Depending on the information available for each country, the same expert used one or more of the 

tactics above. Only one expert mentioned the use of the summary tables to look for the surrogate countries, 

directly using the pairs with the highest probability of grouping. The others preferred to look at specific 

variables which they considered key to the process. There was a consensus among members of the panel that 

the social, economic and climatic variables were not used at any moment. One member suggested that this 

may have happened due to their extensive knowledge of the area under study, replacing the information 

provided with their own concepts. The information sheets mentioned as crucial for the process were the 

source attribution results, the Salmonella incidences, food consumption and the serovar profiles, in which 

case the main objective of the approach was not attained, as the non-health information available worldwide 

was not considered useful, and the main instruments in the process were the information more limitedly 

available. There was also consensus from the panel on the limitations of the applicability of the method, as 

most suggest that using a regression model to obtain significant parameters that can be used as input in an 

equation to obtain estimates, or developing a method for using surrogate data in the traditional microbial 

subtyping models are more sensible ways to go. Regarding the specific attribution results, the five experts 

composing the filtered panel commented that the “unknown category” received the remaining proportions to 

sum 100% after the guesses for the other sources were made, rendering the results for this category not 

useful. 
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8. DISCUSSION 

This thesis presented two multi-country approaches for source attribution of human salmonellosis. A 

microbial subtyping approach for source attribution was applied to data from 24 EU Member States and 

required extensive data management and validation. The second approach, which used clustering techniques 

and expert elicitation, used the results of the first approach as input and extrapolated to European countries 

with insufficient Salmonella data. This section discusses the methods individually, as well as the overall 

results of conducted studies. 

8.1. The EU model 

Results of the EU-wide  microbial subtyping model suggest that layers were the most important 

reservoir of salmonellosis in the EU, being responsible for over 40% of Salmonella infections at the time of 

the study and found as the main source in 13 out of 24 MSs. Pigs were estimated to be the second largest 

contributor at EU level and the main one in eight MSs, while turkeys were revealed as particularly important 

only in Denmark and broilers in Portugal. These results are in general in line with previous source attribution 

estimates obtained at regional and national level in European countries. 

An EFSA  scientific opinion  that used a comparative analysis and interpretation of Salmonella serovar 

occurrence in animals and humans has reached similar conclusions, having also estimated layers and pigs to 

be the first and second source of salmonellosis (EFSA, 2010e). Given the scope of the study, a quantitative 

assessment was only available for slaughter pigs, attributing 10 to 20% of cases to this source, which is less 

than the 31% attributed by the EU model. However, these figures were described as “guesstimates”, and the 

report recommended the development of a microbial subtyping model for the EU, which was expected to 

provide more reliable results. A source attribution model using outbreak data applied by Pires et al. (2011a) 

to attribute salmonellosis in the EU in the period from 2007 to 2009 used different categories for the food 

items included, but also estimated eggs as the main source of human salmonellosis in the EU, followed by 

pork. 

Another EU attribution study, which has been conducted after the work of this thesis was finalized for 

the setting of targets for Salmonella control in the turkey production in the EU (Hald et al., 2012), used the 

same mathematical principle as the one presented here, but updated and slightly different datasets. This 

model (which we refer to as the TT-SAM model) used the same human data as our model, but included 25 

MSs and used 2010 data for all sources except pigs, for which also the BS data were used. Results pointed in 

a different direction when compared to ours and to the other two studies discussed, having estimated pigs as 

the main reservoir of salmonellosis (56.8%), followed by layers (17.0%), broilers (10.6%) and turkeys 

(2.6%). Neverteless, it is important to note that the total number of reported human cases in EU has 

decreased in the period from 2007 to 2010 (EFSA, 2011a; EFSA, 2012a), from approximately 154,000 cases 

(8.9 million after adjusting for underreporting) to 99,000 (5.41 after adjusting for underreporting). This 

reduction is largely explained by a reduction in the number of S. Enteritidis cases, which are particularly 

associated with shell-egg production (Hald et al., 2004; Pires et al., 2009; EFSA, 2012a, Pires et al., 2011a), 

thus affecting the overall source attribution estimates and the relative contribution of food sources. The 

prevalence of S. Enteritidis in laying hens has decreased significantly in the same time period (EFSA, 

2012a), which has been linked to the EU harmonised monitoring put in place in 2008 and the setting of MS-

specific targets for S. Enteritidis and S. Typhimurium occurrence in laying hens (Hald et al., 2012).  Thus, 

the difference between the two models follows the logic that if one or more sources have their contribution to 

the overall burden reduced, other sources will automatically contribute relatively more, and the fact the pigs 
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were the second most important source in the EU and the main in eight MSs make it the most obvious 

“substitute”. 

The relative contribution of different food sources is expected to vary between countries, influenced 

by food production systems, food consumption and preparation habits, food trade and the epidemiology of 

the pathogen in different regions (Pires et al., 2011a).  The comparison of country-specific results of the EU 

model to results of single-country models applied in the EU is possible only for a few countries. Microbial 

subtyping models have been applied to data from Sweden (Whalström et al., 2011), the United Kingdom and 

the Netherlands (Pires, 2009), but these included only domestic sources as categories (in the Swedish study, 

there is also an aggregated category of “imported foods”). The proportions attributed to Swedish layers, pigs 

and broilers were different in the two models; this is likely due to differences in the data used, level of 

subtyping  and number of categories included. The Swedish model includes cattle, geese and wildlife, and 

also uses phage typing data, allowing for a better differentiation of cases of the most common serovars 

between sources. In both models, the number of positive isolates in all sources was very small, and thus 

results were particularly sensitive to the discriminatory power of the data used. On the other hand, the 

estimated main sources of cases were similar in both models: imported foods (6.4% Whalström / 7.7% EU 

model) and travel (82% Whalström / 76% EU, showing an agreement between models in the sources for 

which a larger amount of data is available. Results of the model developed using Dutch data (Pires, 2009) are 

generally in agreement with our results, both in the order of importance of the animal sources and in the 

values estimated. The largest differences were observed in a lower proportion of cases attributed to layers in 

the EU model, which could be explained by the fact that the Dutch study used data from 2006, before the 

already mentioned activities for harmonized control of S. Enteritidis and S. Typhimurium in the EU (Hald et 

al., 2012). Results of the UK model developed in Pires (2009) do not corroborate our results, showing 

broilers as the main source, followed by layers, pigs and turkeys. One possible reason for that is that around 

54% of UK cases in the EU model had travel information recorded as “unknown”, and were thus regarded as 

domestic, while at the same time, 42% of properly reported travelers were S. Enteritidis cases. So, if we are 

to believe that the predominance of this serovar is maintained among those that should have been recorded as 

travel-related, it is likely that the EU model has wrongly attributed travel cases to layers. This is further 

supported by the fact that the Salmonella control in eggs and layers in the UK started in 1989, with the 

establishing of the current program in 2004 (DEFRA, 2007), and the reported data for layers in UK have 

shown a low prevalence in many years (also before 2004, when the BS was conducted). In the data used for 

the EU model, 1.2% of monitoring samples were positive for Salmonella. We therefore believe that the 

results of the single-country model are more correct for this reservoir, as well as for travel-related cases. 

Comparisons with the Danish source account model have been extensively presented in section 6.4 and will 

be discussed in separate. 

A large proportion of cases reported in Finland, Sweden, Ireland, the UK and Denmark were attributed 

to international travel, whereas travelling appeared to be less important in remaining countries, varying from 

14% in the Netherlands to 0% in e.g. Spain. The Danish source account estimated a higher proportion of 

travel-related Salmonella cases, varying between 22 and 46% (Anonymous, 2008; Anonymous, 2009; 

Anonymous, 2010), but these have been estimated accounting for the probability of a case with unknown 

travel information having been travelling abroad before onset of symptoms, and thus added more “possible” 

travelers. In the EU model, it was not possible estimate additional “extra” travelers because the proportion of 

reported cases with missing travel information varied substantially, being 100% in some countries. 

Moreover, travel information as reported to TESSy is often incomplete and may not reflect the true relation 

between travel and domestic cases (EFSA, 2012a). Travel-related disease therefore corresponded solely to 
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the cases that were reported as acquired outside the country, assuming that all reported cases with missing 

travel information were domestically acquired, and is in general expected to be underestimated. As 

examples, Belgium, France, Spain, Romenia and Slovenia systematically report zero travel cases every year 

(EFSA, 2009a; EFSA, 2010a; EFSA, 2011a), even though  there is literature describing travel-related cases 

of salmonellosis in both France (Weill et al., 2006; Hendriksen et al., 2012) and Belgium (Bottieu etl al., 

2011). Finally, in MSs with reasonably good travel data it can be seen that a large proportion of the S. 

Enteritidis infections are linked to travel, which is an indication that the same could happen in the MSs 

which have poor or no travel data.  This suggests that unreported travel-related cases would be wrongly 

attributed to one of the animal food sources included in the model, as also observed by Hald et al. (2012). It 

was not possible to differentiate between travelling within or outside Europe, since this information was only 

available for a few MSs. 

In general, it is not possible to directly compare the proportion of cases attributed to outbreaks with the 

results of previously published source attribution studies. When looking at the UK, for example, the data 

used in the EU model had no outbreak cases reported (Table 5), while in Pires (2009), 5.8% of cases were 

allocated to this source. In the Netherlands and Sweden, on the other hand, the differences observed reflect 

the use of the UFs as multipliers for sporadic cases. As described in the methods section, it was assumed that 

outbreaks have a higher probability of being reported than sporadic cases, and so the same UFs could not be 

applied. It is therefore expected that in the EU model these cases represent a different proportion of the total 

burden when compared to other studies in which there was no correction for underreporting of sporadic 

cases. As an example, in the Netherlands, 10.8% of cases were attributed to outbreaks by Pires (2009), 

compared to 0.5% by the EU model; the UF for the Netherlands is 26.3, and if proportions are recalculated 

not taking that into consideration, Dutch outbreak cases in the EU model correspond to 11.3% of the total. In 

Sweden, where Whalström et al. (2011) reported 2.9% of cases as associated to outbreaks against 4.4% in the 

EU model, our proportions can again be recalculated taking into consideration the Swedish UF of 0.5, 

resulting in a non-adjusted attributed proportion of 2.3%. Therefore, although the models discussed are 

mostly focused on the attribution of sporadic cases, the proper reporting of outbreak cases is regarded as an 

important requirement for the accuracy of their results. 

The attribution of human cases to a limited number of food-animal sources may result in the 

misplacing of some cases if their “true” source is not included. As an example, according to the GEMS/Food 

Cluster Diets (GEMS/Food, 2006), beef is the second or third most consumed food-animal in most EU MSs, 

with consumption being normally lower than pork, but varying in relation to broiler meat, depending on the 

country. Although Salmonella prevalences in beef and beef products are normally low in the EU (EFSA, 

2012a) the non-inclusion of the cattle reservoir in the EU model is likely to have resulted in some beef-

related cases being “wrongly” attributed to pigs, as S. Typhimurium is one of the main serovars in both 

sources. Nonetheless, the initial Danish model only included five sources, and it was still a powerful tool in 

guiding the decisions for the targeted actions regarding broilers, pigs and table eggs that dramatically 

decreased the prevalence of Salmonella in these sources in the last decade (Anonymous, 1998; Wegener et 

al., 2003). 

Other foods recognized as sources of human salmonellosis, such as fruits and vegetables, were not 

included in the model. However, it should be highlighted that the subtyping approach employed is tracing 

human infections back to the animal reservoir. This means that human infections caused by fruits and 

vegetables contaminated with feces from food-producing animals would be traced back to this reservoir, 

which may be useful for some types of risk management decisions. Still, there is evidence that Salmonella-
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contaminated foodstuffs are imported into EU from third countries. Such foodstuffs obviously constitute a 

risk for humans, but their relative importance could not be accounted for in the model.  

8.1.1. Data management and selection 

Data used in the source attribution model were retrieved from multiple sources and presented varied 

levels of quality and completeness. Although TESSy and EFSA collect and organize the data at EU-level in a 

harmonized way, the primary information is collected in different countries, which have their particular 

approaches and methods for data collection and management. This variability would affect the model’s 

design and output and made several data management steps necessary.These steps have by their turn an 

impact on the final estimates and are here discussed. 

 Differences include different levels of underreporting, which were taken into consideration by the use 

of underreporting factors. Limitations and assumptions of the use of those factors should be discussed, as 

they were calculated based on Swedish cases (de Jong and Ekdahl, 2006; Havelaat et al., 2012), which came 

from a system where underreporting is also expected to occur. Also, by using the infection rates in returning 

travelers to calculate incidences for the local population in the countries visited, it was assumed that the 

eating habits and other exposures of Swedish travelers are the same as the locals’, also disregarding local 

levels of acquired immunity and differences in circulating strains. Similar considerations must be done 

regarding the use of a Dutch population-based Salmonella prevalence study as a reference to estimate the 

underreporting in the other countries. A full discussion of the limitations, as well as a comparison of these 

estimates with the ones from 2006 can be found in Havelaar et al. (2012). Although the 2012 UF values are 

different from the ones from 2006 (Havelaar et al., 2012), there is a high correlation between the probability 

of cases being reported on arrival in the two studies and also between the incidence rates found in both, so 

the UFs based on the most recent data were considered validated enough to be applied to the raw numbers 

reported to TESSy. 

The use of underreporting factors has proved important when considering the effect of source and 

country contributions at EU level. This is particularly clear for broilers: this reservoir was the most important 

only in Portugal, but the use of an underreporting factor multiplied its impact within the EU by 2082.9, 

increasing both the relative contribution of broilers and of Portugal to the total cases of salmonellosis in the 

EU, when compared to the original numbers. A similar effect can be observed for the contribution of Greece 

to the total cases attributed to layers. However, it is noticeable that most of the cases “originated” by 

countries with large underreporting factors were reported in those same countries, so one should be careful 

when interpreting these results as countries “exporting” cases to the rest of the EU. 

Given the differences in the frequency of reporting among countries, it was necessary to sum human 

data from the years of 2007, 2008 and 2009, in order to obtain a more robust dataset to work with. This was 

also done because animal BS data were collected in different years, so in order to obtain a dataset with a 

temporal relation between animal prevalences and human cases this data aggregation step was assessed to be 

necessary. Results therefore do not apply to individual years, and this single model does not have the 

objective of observing trends over time. Variability of outbreaks during years also do not affect the model 

results, as outbreaks are removed from the total cases, summed in separate and presented as a category 

labeled “outbreaks”, not having any influence on the attribution to sources. 

Concerning the animal data, the panel of participating MSs varied with each BS, as countries have the 

right to refuse participation in the EU-wide Baseline Studies. The admittance of new MSs to the EU also 

generates different lists of reporting countries for each animal source, as data were collected in different 
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years. The resulting data gaps were, when possible, filled with information from the EFSA EUSR. There are 

currently no EU-wide studies on the baseline prevalences of Salmonella in cattle and no harmonized 

monitoring in place, which is the main reason why this reservoir was excluded from this study.  

Data were also heterogeneous in regards to serotyping information and reporting of aggregated data or 

data with no or sparse serotyping information for both humans and animals. To deal with missing or 

aggregated information, records were reassigned based on specific criteria, and countries were approached 

directly for more complete datasets. Reassignment was based on the serovar distributions observed in 

available data or external reference datasets (e.g., WHO GFN/CDB), and this approach obviously has 

limitations. Any emergence of new serovars or other profile fluctuations may be lost, particularly in 

situations where a whole year of typing is missing and the records are reassigned based on data from 

previous years. Therefore, the serovar reassignment is considered a large source of uncertainty around the 

final data, and the model could benefit from a reassigning approach that uses a stochastic process, allowing 

for this uncertainty to be expressed and quantified. At the current stage, due to the amount of different 

scenarios of non-identification of serovars (Figure 3) and the need to use data from different external 

sources, developing such an approach was not possible. This should, however, be attempted in future 

versions of the model, particularly if establishing a EU-harmonized surveillance (ECDC, 2007; EC Decision 

2002/253/EC, 2008) improves the homogeneity of the data. 

The prevalence data retrieved from the BS was included in the model as point estimates, and this 

represented another possible source of uncertainty. Two possibilities to include the uncertainty around these 

data in the model were investigated. The first was to have the prevalences simulated from prior distributions 

defined based on the point estimates and the confidence intervals. This approach would allow the use of the 

weighted prevalences available in the study reports and their calculated uncertainty. The approach was not 

applicable because weighted prevalences were only calculated for a number of serovars, and so confidence 

intervals were not available for all serovars included in the model. The second approach was to follow the 

methodology described by Müllner et al. (2009), in which the prevalence data was fit as a beta distribution 

with the mean and the standard deviation of the prevalence as parameters  and . These parameters were 

calculated based on simulations of the overall Salmonella prevalence and the relative occurrence of serovars, 

and the approach was justifiable because the data used by Müllner et al. derived from multiple data sources 

and were not representative of the study population. However, this approach leads to an overparametrization 

of the model because the model has only two data points (the prevalence and the amount of a food source 

available for consumption), and was therefore not used. Still, the BS data were considered reliable because 

the target sample in all baseline studies was 80% of the total investigated epidemiological unit (herd, 

holding, flock or unit, depending on the species), and a strict process to replace missing sample points and to 

exclude non-conformant collected samples was performed to achieve a representative sample at both country 

and EU-level in all studies (EFSA, 2007b; EFSA, 2008a; EFSA, 2008b; EFSA, 2010c). The same apply to 

the laying hens data, as the EU-harmonized monitoring includes all commercial flocks of laying hens, 

broilers and turkeys. 

The lack of further subtyping information on S. Enteritidis and S. Typhimurium is likely to have 

resulted in attribution of some human cases to the wrong source. In MSs where S. Enteritidis is prevalent in 

both slaughter pigs and laying hens, the current subtyping level makes it difficult for the model to distinguish 

between the two sources. Some S. Enteritidis cases may therefore have been wrongly attributed to pigs 

instead of laying hens, and it is also likely that the number of broiler-related S. Enteritidis infections has been 

overestimated for the same reason, which was also observed in Hald et al. (2012). However, given the 

current availability of data, it was considered that the use of countries as a third dimension and differences in 
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serovar distribution in the sources among countries can to some extent compensate the low discriminatory 

power of using only serotyping Pires and Hald, 2010). 

Data with higher discrimatory power (e.g. phage typing or antimicrobial resistance susceptibility 

testing) were unavailable because these methods are not routinely applied in several of the included 

countries. Because it is not likely that phage typing or antimicrobial resistance profiles will become available 

at a general level in the EU, the use of other typing methodologies should be explored.One future possibility 

for improving the level of subtyping detail is by applying genotyping methods, which use is expected to 

increase in the next years (Chenu et al., 2012). Those methods produce fast results and are becoming 

increasingly cheaper, which should allow countries to subtype and submit a larger amount of properly 

identified isolates. DNA-based molecular methods have a higher discriminatory power than phenotypic 

methods (Chenu et al., 2012), which makes them particularly useful for outbreak investigations, when there 

is a need to pinpoint a particular source (Torpdahl et al., 2007; Baggesen et al., 2010). Their utility for source 

attribution of sporadic salmonellosis is still to be explored. The use of genotypic subtyping methods would 

theoretically allow the adaptation of the Asymmetric Island model for Salmonella, as was done for 

Campylobacter in England (Wilson et al., 2008), New Zealand (Müllner et al., 2009) and Denmark (Boysen, 

2012). This approach treats animal and environmental sources of the pathogen as populations among which 

there may be gene migration. In each of those populations, the bacteria evolve independently through new 

mutations or horizontal gene transfer (recombination). Mutation, migration and recombination rates are then 

estimated and used to assign human cases probabilistically to one of the source populations (Wilson et al., 

2008). The applicability of this approach for Salmonella has thus far not been tested because appropriate 

genotyping data (e.g. Multiple-Locus Variable number tandem repeat Analysis - MLVA) data are not yet 

available. The Island Model has the advantage of not requiring a full match between human and source 

isolates, thus making it possible to attribute human isolates not observed in the reservoirs to the most likely 

source. However, the probability-based attribution means that cases will be directed to the source in which 

the highest probability of origin was found, even if that probability is low (Boysen, 2012.), not allowing the 

existence of a “unknown source” category. So, although those methods are a promising tool, there still needs 

to be some evaluation of the appropriate level of discrimination that is useful for source attribution based on 

microbial subtyping.  

The attribution estimates took into account the amount of food produced and traded between countries 

as reported to the EUROSTAT database. The underlying assumptions were that the EUROSTAT data were 

complete and consistent, that not all food produced in a country is exported and that all the food available for 

consumption is actually consumed, in a way that these data reflected the real flow of foodstuffs and 

consequent exposure in the countries. These were strong assumptions, as also stated by Vose et al. (2011) 

and Hald et al. (2012), and these data presented a special challenge, as they had to be built based on four 

primary EUROSTAT datasets. According to a quality assessment performed by EFSA (2010f), the 

information recorded in those datasets does not fully support our assumptions. This assessment showed the 

existence and non-reporting of triangular trade, mis-classification of food products and problems in the 

conversion of currency/weight units. Also, in several situations, data had to be estimated for missing years or 

supplied with further surrogate data (e.g. AVEC data). It is an important feature in this model that the 

relative contribution of food-animals produced in different countries is dependent not only on the Salmonella 

prevalence in a source in an exporting country, but also on the amount imported from that country. This is a 

point in which the EU model differs from the way single-country models work: in a single-country model, mj 

works as a subset of aj, as they have the same dimensions (Hald, 2004; Pires and Hald, 2010; Whälstrom, 

2011); for each source, there is only one value of mj and one value for the prevalence (pji) of a subtype in that 
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source. As a consequence, mj, has the role of weighting the contribution of the different sources, which is to 

some extent also reflected in aj. In the multi-country model, m in a reporting country is composed by subsets 

of m from different countries of origin of the food sources, each one with its own prevalence. For that reason, 

even if an exporting country has a very high prevalence in a source, this prevalence will have little impact in 

an importing country if the amount imported is very small, particularly if another country with a low 

prevalence exports very large amounts which can “dilute” the high prevalence found in the first country. In 

short, the amount imported ultimately drives the m*p in the model formula, particularly when large 

differences in trade volume are observed. In order to assure that the use of these data would not compromise 

the model results, data were compared with the WHO GEMS/Food data for validation. This assessment 

revealed that the chosen data management produced data which were in line with the consumption data in the 

GEMS dataset.  

8.1.2. Models comparison 

The comparison between Danish source attribution estimates obtained by the EU Salmonella source 

attribution model and by the single-country model applied using Danish data only was performed to assessed 

the impact of differences between the two models and conclude on advantages and limitations of each. 

Differences derive mostly from the type of data used, and reflect the different levels of subtyping, as well as 

the inclusion of different sources. These two differences have different impacts on the results. 

As an example, imported foods are not explicitely included as a category in the EU model, but are 

present as part of each source category, as the imported volumes and the prevalences in the exporting 

countries are taken into consideration. The impact of this difference is particularly evident for eggs of foreign 

origin, which are not monitored in Denmark and therefore not included in the Danish model. In Denmark, 

human cases are assumed to originate from domestic eggs only because the national food authorities and the 

industry consider that the vast majority of imported eggs are only used for processed foods that undergo 

heat-treatment. This type of country-specific information was not available for the EU study, but future EU 

models could include such data and adjust the results accordingly; in the above example, this would imply 

disregarding the cases attributed to imported eggs.  

When compared to the EU model, the use of the case-by-case data in the Danish model results in an 

underestimation of the contribution of imported meats to the Salmonella cases reported in Denmark because 

it does not sample foods from all countries exporting to Denmark. However, data from the main contributing 

countries in all categories (particularly for pigs, where most cases are domestic) are available, as well as data 

from products imported from non-EU countries, suggesting that the case-by-case data has a good level of 

sensitivity and representativeness for the purposes of the DK model.  

The models’s results also differed in the amount of cases attributed to an “unknown” source, which 

reflects the different number of sources in the two models and the higher level of subtyping detail in the DK 

model. Because the EU model attributes to a lower number of sources and uses data with lower 

discriminatory power, the proportion of cases with an unknown source is expected to be higher. Although 

existent, this difference was not substantial, and this is probably due to the attribution of cases to one of the 

included sources where frequent serovars were also isolated. 

 The proportion of cases attributed to outbreaks differed substantially in the two models because the 

attribution estimates for all sources except outbreaks in the EU model were adjusted for underreporting. This 

changed the balance between the proportion of cases attributed to outbreaks and to the other categories, when 
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comparing the two models. Re-calculation of the proportions after readjustment of the estimates of the two 

models would reveal similar estimates for this category. 

Results of the single-country model could be improved by the use of country-specific trade data for the 

m component, thus taking into consideration a weighted contribution of exporting countries to the number of 

cases attributed to the sources. Two limitations are readily visible in this scenario, as specific imported 

amounts would require country-specific positive percentages or prevalences for the model: 1) if we are to 

trust the trade data used for the EU model, although the main contributing countries are represented, results 

from the case-by-case study are still not fully representative of the variety of countries from which Denmark 

imports food; 2) data from the EFSA baseline studies as well as newer data from the EU harmonizing 

monitoring programs lack the required subtyping detail to keep the level of discriminatory power that the 

model currently has.Thus, here is currently no “better” data to replace the case-by-case. 

Despite the discussed data limitations and differences, results of the EU model seem to point in the 

same direction as the Danish model for prioritizing interventions at the national farm-to-fork chain, showing 

almost the same order of importance for the sources common to both. The main difference was observed for 

turkeys, and it was not possible to evaluate which of the models present a more realistic estimation. 

8.2. Source attribution using expert elicitation based on cluster analysis 

In this pilot, estimates for attributable proportions of Salmonella cases to broilers, pigs, layers, turkeys 

and travel in Romania, Bulgaria, Norway and the Czech Republic were obtained through expert elicitation. 

This approach was attempted because the required data to include those countries in the microbial subtyping-

based model were not available. Attribution results and serovar occurrence in the four sources were used as 

basis for clustering countries present in the EU model, characterizing “profile groups”; then, sets of non-

health-related demographic, economic, climate and animal production data were used to cluster those same 

countries with Romania, Bulgaria and Norway, creating non-health-based “profile groups”. A panel of 

experts was then asked to analyze how countries fitted in the Salmonella profile groups and how they fitted 

together with the added countries in the non-health profiles, and use that information as basis for their 

estimates. 

When considering cases attributed to sources, the majority of Salmonella cases for the Czech Republic 

were attributed to layers, followed by pigs, turkeys / travel and broilers. This order of importance is well in 

line with the estimates from the EU model, although the values were different. The largest difference was 

observed for the “unknown” category. However, as presented in the evaluation of the method by the experts, 

this category received the cases which were not destined to any other categories, becoming a “depository of 

uncertainty” instead of a true attribution category.  

The validation of this of approach was difficult because there are no other source attribution estimates 

to compare with the estimates for Bulgaria, Norway and Romania, and the ones used for the Czech Republic 

were also obtained from a model that is still being evaluated and under a process of improvement. Even so, a 

proportionality similarity index calculated for the two sets of Czech results showed a high level of similarity 

between them, particularly if the “unknown” category is removed because of the aforementioned reasons. As 

for the remaining three countries, a visual assessment of the behavior of the panel concerning homogeneity 

and uncertainty of guesses was conducted, and they seemed to generally follow the same pattern observed 

for the Czech Republic.  
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Although the piloted approach still needs improvements, results suggested that this novel method 

could be useful to assess the relative importance of food sources and define priorities for intervention. This 

pilot study was useful to identify limitations of the current method and potential solutions or alternative 

approaches for modifications.  

One of the basic assumptions of the method was that socioeconomic and climate data could be used as 

input for a source attribution analysis in countries with poor Salmonella data. Nonetheless, this assumption 

was not supported by the experts, who did not not use these data at any moment. This may have been due to 

the fact that the members of the panel already worked in EU-wide projects, knowing the countries under 

study reasonably well, thus not requiring this type of background information. To assess if these data could 

be useful in other studies, future attempts should include a more international panel, whose members could 

potentially find the socio-economical profiling more necessary. In any case, the type of expertise the panel 

showed is an added value for this type of elicitation.  

An alternative way to evaluate this approach would be to adapt the methodology and materials to use 

the attribution results for Latin America and the Caribbean obtained by Pires et al. (2012) and try to 

extrapolate them to surrounding countries not included in that model. If a different panel in a different area 

reaches results as agreeable as in this pilot, this could mean source attribution based on expert elicitation 

informed by cluster analysis of non-health variables is a useful approach for obtaining source attribution 

estimates on a more global scale.  

A more conservative approach to attribute foodborne illnesses in countries where no sufficient data are 

available for a source attribution approach would be to adapt the regression model used by Hansen (2012). 

This study investigated the usefulness of non-health predictors to predict foodborne disease-related mortality 

in multiple countries. In our proposal, the purpose would be to estimate the correlation between each 

predictor and the proportion of disease attributed to food sources, and then apply this effect to the predictor 

values observed for the countries without attribution results. That would require adapting a multinomial 

regression model with probabilities as outcomes, since we intend to predict the different attributable parcels 

simultaneously. Alternatively, one linear regression model could be run per source. At this point, neither of 

these approaches were applied because we had only 24 observations, and the sample size was considered too 

small to obtain any valid results. This approach can be attempted when traditional attribution estimates from 

a larger number of countries are available.  

8.3. General discussion 

The application of a microbial subtyping approach for source attribution of human salmonellosis at the 

EU level was successful and produced novel and useful results. We considered that the management 

approach applied to the available data produced datasets considered useful for the applied source attribution 

method, provided that a thorough data evaluation of the data is performed and specific countries and 

reservoirs with insufficiently representative data are excluded, thus accomplishing objective 4.1.1. This 

shows that, as long as existing limitations are taken into consideration and clearly reported, public 

surveillance and monitoring data can be used for scientific purposes, and this could be a first step to the 

conduction of source attribution studies in countries where no country-wide baseline studies or serovar 

surveys have been conducted, but where programs for Salmonella monitoring in food or surveillance in 

humans are currently running. 

Despite data limitations and the consequent uncertainty in the results, the source attribution estimates are 

considered valid as a first indication of which sources are most important for human salmonellosis in several 
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countries. Limitations include the variability in the human surveillance systems in place in the countries, as 

well as the different details with which serovar information is reported for both human and animal-food 

sources. Such uncertainties cannot be statistically quantified, but should be kept in mind when interpreting 

the results. The relative importance of different food-animal sources was found to vary between countries 

according to differences in prevalences, trade and consumption patterns and preferences, as well as animal 

and food production systems, also highlighting regional differences in the focus of surveillance systems in 

place in EU Member States. Thus, objective 4.1.2. was considered as accomplished, as the results of the 

model are expected to be useful for the delineation of risk management strategies in the EU, particularly if it 

is applied on a regular basis, to evaluate the impact of targeted interventions and dynamic changes in the 

sources of human salmonellosis. As a consequence of the accomplishing of objective 4.1.3., improvements to 

the model have been proposed and implemented. A good example of that is shown in Hald et al. (2012), 

where the decrease of egg-related cases in the EU due to control measures can be observed from the 

application of updated data to the EU model. Also, a user-friendly tool for running the EU-model, as well as 

country-specific source attribution, was recently developed for EFSA, making this procedure more 

accessible for both EFSA and a larger number of countries (Hald and Lund, 2012).  

Concerning the proposal of an alternative approach for source attribution for countries with missing 

data, we considered that objective 4.2.1. was accomplished, as the potential usefulness and viability of the 

clusters-based expert elicitation are visible. However, the right combination of non-health variables is still to 

be found. As of now, the main difficulty in the application of this approach in a global scale is that available 

source attribution estimates for different countries must have been obtained under the same study, or at least 

focused on the same sources; otherwise, the clustering process gets compromised. Notwithstanding, we 

suggest that modifications to the applied methodology could improve the approach and achieve better results. 

 

9. CONCLUSION 

We conclude that Hypothesis 1 (It is possible to develop an EU model based on the data available) is 

accepted, as the development of a useful EU model with the available EU surveillance data was successful, 

and this proved to be a viable option for countries with less intensive data-collection systems than 

established e.g. in Denmark. 

On the contrary, Hypothesis 2 (It is possible to extrapolate results of the EU model to countries with 

insufficient data using non-health indicators and expert elicitation), is at this point rejected, as the non-health 

indicators per se were not used by the panel of experts. 
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10. PERSPECTIVES 

Several improvements to the two approaches could be applied. Proposed improvements to the EU 

microbial subtyping model include: 

a) Add a stochastic feature to the serovar reassigning, which would allow for the expression of the 

uncertainty inherent to the process. 

b) Develop an approach to use animal prevalence data as a stochastic node, in an attempt to allow for 

the model to estimate prevalences for countries where those data is not available. 

c) If the model is not able to estimate the prevalences for lack of input data, use the same materials 

from the clusters EE to elicit a) surrogate prevalence data for the countries and sources which are 

missing and include them in the EU model, or b) surrogate values for a and q, and have the model 

estimate the prevalences. 

Additionally, we expect that the potential for repeating the application of the EU model in upcoming 

years should motivate countries to improve the reporting of isolates. Although it is only mandatory for MSs 

to report S. Enteritidis and S. Typhimurium, subtyping of all isolates is performed to identify those two, and 

so other serovars can be easily reported.  

Another interesting prospect is to set up a research initiative looking into genotypic sequencing 

methods (MLVA, MLST, other) which are more suitable for source attribution, including an assessment of 

the discriminatory level that makes the most appropriate distinction between epidemiologically related and 

non-related strains. On a more long-term basis, that could result in the setting up of a system collecting 

genotypic information from the harmonized EU Salmonella surveillance programmes, so that future source 

attribution studies could be based on genotypic subtypes. Finally, further application and evaluation of the 

subtyping approach for other foodborne pathogens should be pursued in future studies.  

As for the clusters elicitation, perspectives include the conduction of a full study after this pilot, using 

a larger panel, and also the application of the same model to Latin America and the Caribbean. The prospect 

is to use an international panel and posteriorly comparing the uncertainty level provided by experts in the 

two models. 
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Summary  

Microbial subtyping approaches are commonly used for source attribution of human salmonellosis.  Such 

methods require data on Salmonella in animals and humans, outbreaks, infection abroad and amounts of food 

available for consumption. A source attribution model was applied to 24 European countries, requiring 

special data management to produce a standardized dataset. Salmonellosis data in animals and humans were 

obtained from datasets provided by European Food Safety Authority. The amount of food available for 

consumption was calculated based on production and trade data. Limitations included different types of 

underreporting, non-participation in prevalence studies, and non-availability of trade data. Cases without 

travel information were assumed to be domestic; non-subtyped human or animal records were re-identified 

according to proportions observed in reference sources; missing trade information was estimated based on 

previous years. The resulting dataset included data on 24 serovars in humans, broilers, laying hens, pigs and 

turkeys in 24 countries.  
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INTRODUCTION 

Unsafe food is related to several kinds of diseases, ranging from diarrhoeal syndromes to various forms of 

cancer [1,2]. Although the true burden of foodborne diseases is currently unknown, it is considered that is has 

increased in the last decades, as the growth of global population was accompanied by an increase of 

consumption of animal products, and the more intensive production methods required to supply it [1,3]. In 

2005, it was estimated that food- or waterborne diarrhoeal diseases were responsible for 2.2 million deaths 

per year worldwide, 1.9 million of which were children [2].   

Salmonella spp. is one of the most common and widely distributed foodborne pathogens in the European 

Union (EU), with a total of 108.614  laboratory-confirmed cases reported by 27 Member States (MS) in 2009. 

Athough its relative importance has been decreasing since 2006, S.Enteritidis is still the main reported serovar 

(52.3% of cases), followed by S.Typhimurium (23.3%). However, a wide range of others frequently cause 

disease in humans and thus are of public health significance [4]. 

Since 2003, efforts have been made in the EU to standardize the reporting of pathogens and diseases in 

humans and animals. These included the conduction of studies to estimate the MS-level baseline prevalence 

of Salmonella in animals of the food chain [5,6,7,8], and setting targets to reduce it. Other efforts were the 

harmonization of the monitoring of Salmonella in laying hens [9], broilers [10] and turkeys [11], the last two 

implemented after the activities described in this manuscript. Those actions are expected to have an impact on 

the contribution of different food-animals to human salmonellosis in all individual MSs, but until 2010, this 

information had not been assessed. 

Identifying which foods are more frequently implicated in the transmission of an illness is a crucial step on 

the prioritization of control measures [12], and a variety of methods to attribute foodborne pathogens to 

specific sources are available, including approaches based on analysis of data from microbiological and 

epidemiological studies, intervention studies, and expert elicitations [13]. Source attribution (SA) methods 

present different advantages and limitations, and their applicability depends on the pathogen in question and 

on the data available to address a specific public health question [13,14]. 



3 
 

Several Salmonella SA studies based on microbial subtyping have been conducted in EU countries with well-

established public health and animal surveillance systems [15,16,17,18]. At the EU-level, an analysis of 

outbreak data for SA of salmonellosis was conducted [19], and its results suggested regional differences in 

the relative importance of food sources for disease, but also reflected the variability in the effectiveness of 

implemented surveillance systems and quality of data in different countries. For that reason, no direct 

comparison of the public health impact of food sources between EU countries or regions was possible. 

The principle of source attribution by microbial subtyping is to compare the occurrence of subtypes in 

animals or food sources with the same subtypes in humans, provided that subtypes are heterogeneously 

distributed among the sources. Human infections caused by source-specific subtypes are attributed to the 

corresponding sources. Infections caused by subtypes found in several reservoirs are distributed relatively to 

the prevalence of the specific types. This approach requires an integrated foodborne disease surveillance 

programme that collects isolates from the major food-animal reservoirs of foodborne diseases, as well as 

information on sporadic human cases, outbreaks and travel-related cases [15].  

Based on the SA studies reviewed [15,16,17,18], the “perfect” dataset would include 1) the number of 

reported salmonellosis cases in humans, originating from a nationally representative surveillance system in 

which cases are all confirmed by laboratory and subtyped to an appropriate discriminatory level; 2) 

information on whether the person reported had been travelling abroad up to seven days prior to symptoms 

onset; 3) number of outbreak cases and identified outbreak sources; 4) prevalence of Salmonella subtypes 

characterized by the same subtyping methods as applied to human isolates and representing all major sources 

of human salmonellosis in Europe and 5) the amount of an animal product originating from a country which 

is ingested by consumers in another country. Phage type data with further differentiation based on 

antimicrobial resistance profiling is currently considered the ideal level of subtyping for those models, as it 

allows better differentiation of common subtypes (e.g. S. Enteritidis and S. Typhimurium) among similar 

sources, when compared to using serovars [20].   

The present paper describes the data obtained from different sources available in 2010 to be used in an EU-

wide SA model based on microbial subtyping, as well as the data management steps taken to produce a 
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homogenous dataset containing Salmonella serovar information from humans and animal reservoirs used for 

food production.  Limitations to the data available are presented, along with the solutions applied to solve 

them. 

METHODS 

Data sources 

The European Surveillance System (TESSy):  TESSy is a system for collection, validation, analysis and 

dissemination of data from 27 EU MSs and three European Economic Area (EEA) countries, functioning 

since 2008 [21]. Countries report their data on communicable diseases to the system, which is administered 

by the European Centre for Disease Prevention and Control (ECDC). The system also records information on 

outbreaks and possibility of infection during international travel. The specific reporting of Salmonella 

serovars is only mandatory for S.Enteritidis and S.Typhimurium [21], meaning that the reporting of other 

serovars and further subtyping levels is only done on a voluntary basis.  Data reported prior to 2008 are also 

available, since TESSy replaced the data collection systems for the Data Surveillance Network, which 

collected national data individually [21]. 

The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Foodborne 

Outbreaks (EUSR): The report has been prepared by the European Food Safety Authority (EFSA) since 2004 

in collaboration with ECDC. Data on the occurrence of zoonoses and zoonotic agents in animals, foodstuffs 

and animal feed is reported annually by MSs to EFSA and summarized in the EUSR. Serovar reporting in the 

animal data reported to the EUSR follow the same requirements as described for humans. 

Baseline studies on the prevalence of Salmonella in animal populations in the European Union (BS): In order 

to provide the scientific basis for setting prevalence targets for reduction of Salmonella in commercial and 

breeding farms, EU-wide studies on the baseline prevalence of Salmonella were conducted focusing on laying 

hens (2004-2005) [5], broiler flocks (2005-2006) [8], slaughter pigs (2006-2007) [6], fattening and breeding 

turkeys (2006-2007) [7], broiler carcasses (2008) [22] and breeder pigs (2008) [23]. The studies took place 

during a four-year period, and varied in MS participation due to the addition of new members to the EU in 
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2004 and 2007, and to the occasional participation of EEA countries. However, they still constitute the most 

uniformly collected and analyzed data on Salmonella at EU level, allowing valid comparisons among MSs. 

The statistical office of the European Union (EUROSTAT) [24]: EUROSTAT was established in 1953 to 

provide the European Union with statistics at European level that enable comparisons between countries and 

regions. It collects data on the value and quantity of food and slaughter animals traded between EU MSs and 

by EU MSs with third countries. European Community legislation ensures that the statistics provided to 

EUROSTAT by the MSs are based on legal texts and on harmonized definitions and procedures [24]. 

However, data availability varies depending on country and products selected, since the information is 

provided directly by MS, being subject to variations in national focus and cultural differences.  

Data were stored and analyzed in SAS Enterprise Guide, SAS Institute, SAS/STAT® User’s Guide, Version 

8, Cary, NC: SAS Institute Inc., 1999. 

Reported cases of human salmonellosis 

Data on the number and serovar distribution of human cases reported to TESSy from 2007 to 2009 were 

extracted on 6th of July 2010 and provided by ECDC through EFSA. The total number of reported cases 

includes sporadic, travel and outbreak-related infections. MSs for which the level of serovar detailing was 

insufficient for source attribution were requested to provide additional data if available. Such national 

datasets were provided by Poland and Portugal. The MSs providing data on sporadic cases and outbreaks are 

summarized in Table 1.  

Challenge 1: Underreporting 

One issue arising from the use of surveillance data is the underreporting of cases, which can happen in all 

steps of the surveillance process [25].  It is generally understood that the real (and generally unknown) 

number of illnesses occurring in the population is larger than the number of cases that actually get reported in 

the surveillance system, which is explained by the percentage of: 1) cases who seek medical care; 2) cases 

which are asked for clinical specimens and actually provide them; 3) specimens which are tested; 4) 

sensitivity of the laboratory tests used and 5) positive results which are reported [25]. Therefore, it is accepted 
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that the true burden of human salmonellosis may be considerably larger than the officially reported incidence. 

The level of underreporting is expected to vary between countries, depending on differences in organization 

and effectiveness of local surveillance systems [21,26].  

Proposed solution: In 2012, Havelaar et al.[ 21,26] used data from a Swedish travel database and the 

Salmonella incidence from a Dutch population-based study to estimate a set of multipliers for correction of 

underreporting in 31 European countries. The multipliers were estimated based on the proportion of cases of 

salmonellosis which were reported in Sweden upon returning from the Netherlands, and represent an 

estimation of the number of cases that should have been reported for each case that entered the system. It is 

expected that the use of these multipliers have an impact on the most important sources estimated at EU-

level. As the adjustment for underreporting is only done after the attribution process, the corrected numbers 

are not shown here, but can be found in de Knegt [20]. 

Challenge 2: Incomplete travel-related information 

Travel information, derived from data reported as “probable country of infection” was reported as 

“imported”, “not-imported” or “unknown location of origin”. The proportion of travelers and the amount of 

information provided varied among MSs; in Sweden and Finland, travel-related cases corresponded to 77% 

and 82% of the total, while other countries (nine in 2009) reported 100% of cases as “unknown travel 

history”.  

Proposed solution: The Hald model and its adaptations [15,16] use the observed proportion of travel cases 

that were properly discriminated to redistribute cases with no information to the “travel-related” and 

“domestic” categories; the same approach could potentially be used to estimate extra travelers in the EU 

model. In case there is not enough information available for the redistribution, cases which did not 

specifically report a travel history should be considered as domestic,  

Challenge 3: incomplete or missing serovar identification 

Expected situations in which serovar identification is missing or incomplete can be summarized as: a) 

classification only up to genus or species level, such as Salmonella spp, or Salmonella enterica; b) 
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classification up to subspecies level, such as Salmonella enterica enterica or Salmonella enterica  Subspecies 

I; c) classification using groups based on the O-antigen both by the old nomenclature, like groups B, C1-C2 

or E4, or the new one, such as serogroups O:4, O:7 or O:33; d) aggregated data, where the main serovars 

were specified, and the remaining were grouped as “Others”; e) cases where the serovar field is simply blank 

or filled with “unknown”.  

Proposed solutions: isolates not classified up to serovar level or data reported in aggregated form should be 

reassigned to specific serovars according to proportions observed in previous studies, in the same dataset or in 

other references, depending on the availability of data in each case.  

Isolates identified up to genus or species level, blank or filled with “unknown” should be reassigned to all 

serovars observed in the country. (e.g.: if S. Enteritidis accounts for 60% of all serotyped isolates from human 

cases in a country, and 10 isolates in the same country receive one of the denominations mentioned, six of 

them must be reassigned to S. Enteritidis). Isolates identified up to subspecies level should likewise be 

reassigned to all serovars in the country, but with proportions calculated using only isolates of S. enterica 

enterica as total. 

Isolates classified as serogroups should be distributed among serovars pertaining to those groups, in 

accordance with the Kauffman-White-Le Minor Scheme 9th edition [27] (e.g., if S.Typhimurium accounts for 

40% of all isolates in the country, but for 80% of units from serovars belonging to Group B, and 10 isolates 

are only identified as “Salmonella Group B”, eight of those must be reassigned to S.Typhimurium).  

Isolates classified as “Others” are assumed to belong to serovars not described in the current dataset, but 

nonetheless present in the country. In this case, the reference used for reassignment proportions is the World 

Health Organization Global Foodborne Infections Network (GFN) Country Databank (CDB) [28], which 

contains the 15 most commonly identified Salmonella serovars among human and non-human sources in 84 

countries (e.g.: in the original TESSy data, a country reports 30 isolates: 10 S.Enteritidis, 10 S.Typhimurium 

and 10 “Others”. The GFN CDB shows 80% S.Enteritids, 10% S.Typhimurium, 7% S. Infantis and 3% 

S.Hadar for this country, so, according to this reference, S.Infantis and S.Hadar correspond to 70% and 30% 

of the non-described serovars. The 10 isolates should then be redistributed as seven S.Infantis and three 
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S.Hadar, as it is assumed that no S.Typhimurium or S.Enteritidis isolates are included in the group of 

“others”). 

Challenge 4: underreporting and incomplete identification of serovars in outbreak data 

For outbreaks of foodborne salmonellosis, the same datasets used for the EUSRs 2007-2009 [4,29,30] were 

provided by EFSA. Not all countries report outbreak cases, and not all reported cases are reported with 

complete serovar information.   

Proposed solutions: the same underreporting multipliers used for sporadic cases cannot be applied to 

outbreaks, as it is assumed that outbreaks have a higher probability of being reported. Based on that, countries 

which report sporadic cases but no outbreak cases are assumed as not having any foodborne Salmonella 

outbreaks in the period. Outbreak-related cases for which a serovar is not fully identified should be reassigned 

using the proportions observed in the same outbreak dataset, as some serovars may be more prone to generate 

outbreaks than others [16], and thus the proportions observed in reported sporadic cases may not apply. 

Salmonella in livestock and food 

Challenge 5: Data available may not be representative of all MSs and animal sources 

Data from the EU BS on the prevalence of Salmonella the sources were the preferred data source. Due to 

admission of new MSs to the EU and to the fact that participation in the BSs is voluntary, it is expected that 

BS data is not available for all sources in all MSs. However, these datasets were still considered the most 

representative of the given reservoirs, since no harmonized EU monitoring in pigs and turkeys was currently 

in place, and the broiler carcass study was considered to provide more recent data than BS on broiler flocks, 

with a better detailing of the serovar distribution when compared to the existing EU monitoring data. The 

laying hens BS was conducted between 2004 and 2005 [5], and it is expected that the implementation of the 

harmonized monitoring [9] has resulted in significant changes in the Salmonella serovar prevalences in this 

reservoir in many MSs. No data from BS or EU-harmonized monitoring exist for cattle. 

Proposed solutions: in order to use the most recent data possible, data which is missing from BSs should be 

supplied with surveillance and monitoring data found in the EUSR. When not enough surveillance or 
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monitoring data at herd/flock level are available for a source or MS, slaughter samples should be surveyed 

and their quality as substitutes assessed.  

Challenge 6:  incomplete or missing serovar identification 

In the laying hens data, in addition to isolates with non-identified or partially identified serovars, many 

countries only report a reduced list of serovars and a group of “Others”, as  S.Enteritidis and S.Typhimurium  

are the only two serovars for which specific reporting is mandatory [21]. For BS data, no reference for 

reassigning of serogroups or incomplete serovar identification is available. 

Proposed solutions: proportions found in the laying hens BS [5] should be used for re-allocation of laying 

hen units. In datasets where there are no records identified as “Others”, units should be redistributed 

according to the proportions found among properly identified serovars in the same dataset. The criteria for 

reassigning non-identified or partially identified serovars should be the same as for the human data.   

Food production and trade data 

Food production data were derived by EFSA from the EUROSTAT databases on production and on 

slaughtered animals for food consumption [24]. Consumption calculations were based on trade data. This was 

done so the attribution model can account for the amount of food present in a given country which originated 

from other countries and use the country- and food-specific serovar prevalences for the attribution [20]. The 

domestically produced amount available for consumption of a food source in a MS was estimated as 

Domestic Production minus Export, whereas the amount of imported food available for consumption in MS A 

originating from MS B was estimated as Import minus Re-export (when re-export was relevant), thus making 

it necessary the use of production data, as well as country-to-country imports and exports. For this study, 

extra-EU food trade was not considered [20]. 

Challenge 7: Missing data 

Information on poultry for meat production was not available for Belgium in 2007 and 2008. Egg production 

data were lacking for several countries, and data for most food sources and most years were missing in 
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Cyprus. Data on the export of the food sources to other MSs included in this study were available for all 

considered countries, with the exception of the amount of eggs exported from Cyprus.  

Proposed solutions: Missing data on annual quantities of poultry meat products sold per MS, with 

differentiation between boilers, turkeys and other poultry species should be obtained from the 2009 Annual 

Report of the Association of Poultry Processors and Poultry Trade in the EU Countries [31]. For all sources, 

countries with information missing for a year should have the missing value estimated based on the 

percentage of increase or decrease between available years; when data from only one year is available, that 

value will be used as surrogate for the missing years. 

Challenge 8: Negative estimated amounts available for consumption 

Due to differences among numbers reported in the production, imports and exports datasets, the operation to 

calculate the amount of a food source available for consumption in a country in some cases results in negative 

numbers, meaning the volume exported is larger than the domestic production.  

Proposed solution: In order to ensure that MSs will still have nationally produced food available in their own 

country, it re-exporting of imported products should be considered possible. 

Challenge 9: Validation of the estimation of consumption data based on trade data.  

The underlying assumptions for this estimation were that EUROSTAT data were complete and consistent and 

that all the food available for consumption is actually consumed, in a way that these data reflected the real 

flow of foodstuffs and consequent exposure in the countries. According to a quality assessment performed by 

EFSA [32], the information recorded in those datasets does not fully support those assumptions. This 

assessment showed the existence and non-reporting of triangular trade, mis-classification of food products 

and problems in the conversion of currency/weight units. Also, we expect that in several situations, data for 

missing years needs to be estimated or supplied with surrogate data (e.g. AVEC data), resulting in a highly 

manipulated dataset that may not represent reality.  

Proposed solution:  the data management can be validated by comparing the resulting consumption dataset 

with consumption data available from the WHO Global Environment Monitoring System Food Consumption 
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Cluster Diets [33]. The WHO data is available in grams/person/day, so the estimated data should be 

converted to the same unit. As the WHO data only offers the broad category “poultry”, broilers and turkeys 

should be summed. Relative proportions of consumption of poultry, pork and eggs must be calculated, so a 

Proportional Similarity Index (PSI /Czekanowsky index) can be used to compare those proportions between 

the two groups in each country. The PSI is an estimate of the area of intersection between two frequency 

distributions [34], and is calculated as 

PSI= 1-0.5*∑|p1-q1| = ∑ min(p1,q1) 

It is traditionally used for calculating niche overlap and resource availability in population ecology [35] or 

proportions of identified bacterial strains in epidemiology [36,37], but here it was considered that each of the 

relative proportions among the three sources corresponds to the area under a probability curve, and so the 

same measure can be applied. A PSI of 1 means a complete overlap, or 100% similarity. An “overall PSI” for 

the whole dataset was calculated by averaging the country PSI values. 

RESULTS 

The availability of data in all surveyed countries is shown in Table 1. A list of 25 serovars was selected to be 

addressed further, based on their occurrence in humans and animals (Table 2).  

Human data 

The percentage of records that had incomplete identification and had to be reassigned varied from zero in 

Portugal to 84% in Romania (Table 3). The most common reason for reassignment were records reported in 

aggregated form, i.e., with several serovars under a group named “Others”, and the second were isolates 

reported as “Unknown”, followed by isolates only classified as serogroups (Table 3). Besides the predicted 

identification problems, a specific issue regarding S. Typhimurium was found: one of the defining 

characteristics of S.Typhimurium  is presenting two phases of H-antigens: “i” and “1,2”, which is why the 

antigenic formula for this serovar is written as “1,4,[5],12:i:1,2”, with the two mentioned phases seen at the 

end [27]. However, variants that lack either the first- or the second-phase H antigen have been described, and 

reported by some countries as “1,4,[5],12:i:-“,  “1,4,[5],12:-:1,2” or  “1,4,[5],12:-:-”.  S.Typhimurium-like 
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variants with only one phase of the H or I antigens are referred to as “S.Typhimurium-like strains” or 

“Monophasic S.Typhimurium” [38]. For our purposes, isolates identified by those formulas in the datasets 

were reassigned to S.Typhimurium, which is supported by an EFSA Biohazard Panel assessment [38]. The 

aphasic antigenic formula “1,4,[5],12:-:-” was not reassigned, as it could belong to several serovars in group 

O:4. 

Regarding outbreak data, Bulgaria, Cyprus, Greece, Italy, Luxembourg, Malta and the United Kingdom did 

not report any cases. Nearly 47% of outbreak cases reported by France had to be reassigned, as the isolates 

were reported as “Salmonella spp”. For Latvia, the proportion was 39% (Table 4). Switzerland reported 

outbreaks, but no sporadic cases (Table 1).  

Travel information (Table 5) was reported as “Unknown” for 100% of isolates in France, Romania and 

Slovenia. Full travel information was provided by Austria, Belgium, the Czech Republic, Estonia, Spain, 

Hungary, the Netherlands and Slovakia. The remaining MSs had variable proportions of cases reported as 

“Travel-related”, “Domestic” or “Unknown”.  As a result, the proposed “informed redistribution” was not 

possible, as a large number of countries did not report any travel cases. As a consequence, all records with 

missing or unknown travel information from countries with serovar detailing of sporadic cases were 

considered domestically acquired in the reporting country. 

Figure 1 shows, , the relative occurrence of the 11 serovars most frequently found simultaneously in humans 

and animals in the last five years in sporadic and outbreak cases[4,30]. S.Enteritidis and S.Typhimurium were 

the serovars most frequently observed in sporadic human cases, together with S.Infantis, S.Newport, 

S.Kentucky, S.Virchow, S.Derby and S.Agona. The most common serovars observed in outbreaks were 

S.Enteritidis and S.Typhimurium. As expected, outbreaks may be associated with serovars not normally 

found in the country. That is particularly true in countries with a small number of sporadic cases and a good 

level of control of Salmonella in domestic products, like Finland or Sweden.  

Animal-food data 

Data was available from 28 countries (see Table 1 for data origin in each reservoir). Data for laying hens 

were obtained from the EUSR 2008 [30], which was the first year of EU-harmonized reporting for this 
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reservoir, being preferred over the BS data. Greece did not participate in the broiler carcasses study [22], 

being supplied with data from the broiler flocks BS [8]. Malta and Romania did not participate in the study on 

slaughter pigs [6], and no surrogate data was available for those countries. For turkeys, BS data from 

fattening flocks were chosen over breeding flocks [7], with the exception of Estonia, Latvia, Luxembourg and 

Romania, which were not part of the study. Data for those countries were provided by EUSR data from 2006 

and 2008 [30,39], but no surrogate data was available for Romania. Non-harmonized surveillance data on 

cattle, including carcass samples at slaughter, was retrieved from the EUSR 2007, 2008 and 2009 [4,29,30] 

with 2009 data being preferred to the other years. Cattle data for France was retrieved form a PhD thesis [40]. 

For this reservoir, no data from Cyprus or Malta were identified, and for some countries only a single year of 

data was available. In the resulting datasets, Belgium and the United Kingdom only reported positive samples 

for cattle, resulting in 100% positivity in those countries. Small samples were also observed for broilers in 

Luxembourg, laying hens in Lithuania and Luxembourg, and turkeys in Estonia, Luxembourg and Latvia. 

Total samples submitted and total positive per country are summarized in Table 6. The amount and 

percentage of reassigned records among the total positives are shown in Table 7.  

Serovar predominance varied between countries in all animal sources. Overall, considering the relative 

occurrence of serovars and number of countries in which they predominated, S. Infantis and S. Enteritids were 

the main serovars observed in broilers, S. Typhimurium and S. Derby in pigs, S. Typimhurium, S. Bredeney 

and S. Hadar in turkeys, S. Enteritidis and S. Infantis in layers. S. Dublin and S. Tpyhimurium were the main 

serovars in cattle, but the data was considered too heterogeneous and frail to be considered representative. 

The top-ten serovars for broilers, pigs, turkeys and layers and relative proportion graphs for the selected 

serovars can be found in de Knegt [20]. 

Trade and consumption data 

Availability of data on the annual quantities of poultry, pork and bovine meat and eggs produced varied per 

year and per MS. All MSs reported imports from other MSs for all food products in the study period. The 

resulting surrogate consumption dataset was considered valid, as shown by the results of the data validation 

by comparison with GEMS data (Table 8). The individual PSI values were higher than 0.8 in all countries 
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except for one, indicating more than 80% similarity between the estimated data and the reference values. The 

one exception was Cyprus, with only 42% similarity, which is expected to have an impact on the attribution 

estimates for this country. Still, the overall PSI was 0.91, indicating that the dataset as a whole can be used 

without considerable bias.  

Final dataset for the source attribution model 

Based on data availability and quality, 24 countries were included in model: Austria, Belgium, Cyprus, Czech 

Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, 

Luxembourg, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, The Netherlands and the United 

Kingdom. Countries initially analyzed and excluded from the final dataset were Bulgaria, which provided 

100% of human cases without serovar detailing; Romania, which only participated in one BS, did not have 

enough surrogate data to be retrieved from the EUSR, and reported 84% of cases without serovar 

information; Norway and Switzerland, which do not report to EUROSTAT, the latter also not reporting to 

TESSy. 

Based on the availability of EU-wide homogeneous data or with at least good-quality surrogates, food-animal 

sources included were broilers, pigs, turkeys and laying hens (as the animal reservoirs for chicken meat, pork, 

turkey meat and eggs). Due to better completeness and availability, the resulting trade data from 2009 was 

used as consumption data for those sources. Data from the cattle reservoir were in general poor and for some 

MSs consisting of clinical isolates only. Efforts to improve the dataset by using herd information from 2007-

2008 or slaughterhouse carcass samples did not prove sufficient to obtain a representative dataset for this 

source.  

Twenty-two serovars were selected to be specifically addressed, based on their presence and importance in 

humans and in the main animal reservoirs: S. Agona, S. Anatum, S. Bovismorbificans, S. Braenderup, S. 

Brandenburg, S. Bredeney, S. Derby, S. Enteritidis, S. Hadar, S.Heidelberg, S. Infantis, S. Kentucky, S. 

Kottbus, S. Livingstone, S. London, S. Mbandaka, S. Montevideo, S. Newport, S. Rissen, S. Saintpaul, S. 

Typhimurium and S. Virchow. Albeit important in humans in most of the 24 countries, S. Dublin, S. Ohio and 

S. Stanley were excluded because S. Stanley was not isolated from the selected reservoirs, while S. Dublin 
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and S. Ohio became irrelevant after cattle was excluded. The building structure of the final Salmonella dataset 

(trade data not included) is shown in Figure 2. 

DISCUSSION 

This study presented the officially reported data available to be used in a EU-level source attribution model 

based on microbial subtyping [20]. Challenges associated with the use of those data were also presented, and 

solutions were proposed. The data available were retrieved from multiple sources and presented varied levels 

of quality and completeness. Although TESSy and EFSA collect and organize the data at EU-level in a 

harmonized way, the primary information is collected in different countries, which have their particular 

approaches and methods for data collection and management. Non-EU European countries such as 

Switzerland and Norway are also a source of data heterogeneity, as they participate in some studies and report 

partial data, for example, to the EUROSTAT production database, but not to the trade database. This 

variability made several data management steps necessary. 

The variability observed in the number of reported human Salmonella infections reflects true differences in 

the burden of salmonellosis across countries, but also differences in foodborne disease surveillance systems in 

MSs and different levels of underreporting. The loss of data at various points along the surveillance chain 

from patient to official statistics is recognized in all countries [25], and multiplying factors [26] were used to 

try to compensate the occurrence of underreporting. Limitations and assumptions of the use of those factors 

should be discussed, as they were calculated based on Swedish cases [26], which came from a system where 

underreporting is also expected to occur. By using the infection rates in returning travelers to calculate 

incidences for the local population in the countries visited, it was assumed that the eating habits and other 

exposures of Swedish travelers are the same as the locals’, also disregarding local levels of acquired 

immunity and differences in circulating strains. Similar considerations must be done regarding the use of a 

Dutch population-based Salmonella prevalence study as a reference to estimate the underreporting in the 

other countries, and a full discussion of the limitations can be found in Havelaar et al. [26]. Furthermore, this 

adjustment is expected to affect the relative importance attributed to the different sources by the model at EU 

level, as it affects the contribution of each country to the total burden of salmonellosis in the EU. 
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Information about travelling within or outside Europe was not available in a representative manner, and it was 

not possible estimate additional “extra” intra-EU travelers because the proportion of reported cases with 

missing travel information varied substantially, being 100% in some countries. Thus, it had to be assumed 

that all reported cases with missing travel information were domestically acquired, which is expected to be an 

overestimation, since travel information as reported to TESSy is often incomplete and may not reflect the true 

relation between travel and domestic cases [4].  

Concerning the animal data, the panel of participating MSs varied with each BS, as countries have the right to 

refuse participation in the EU-wide Baseline Studies. The admittance of new MSs to the EU also generates 

different lists of reporting countries for each animal source, as data were collected in different years.  The 

resulting data gaps were, when possible, filled with information from the EUSR. There are currently no EU-

wide studies on the baseline prevalences of Salmonella in cattle and no harmonized monitoring in place, 

which is the main reason why this reservoir was excluded from this study. However, this is not expected to 

have a large impact on the model, as national attribution studies have suggested that the contribution from the 

cattle reservoir in general is low when compared to the other sources [16]. 

Data were also heterogeneous in regards to serotyping information and reporting of aggregated data or data 

with no or sparse serotyping information for both humans and animals. To deal with missing or aggregated 

information, countries were approached directly for more complete datasets, and records were reassigned 

based on the serovar distributions observed in available data or external reference datasets (e.g., WHO 

GFN/CDB). One limitation of this approach is that any emergence of new serovars or other profile 

fluctuations may be lost, particularly in situations where a whole year of typing is missing and the records are 

reassigned based on data from previous years. Therefore, serovar reassignment is considered a large source of 

uncertainty around the final data, and it is proposed that future models use a stochastic approach for 

reassigning, allowing for this uncertainty to be expressed and quantified. 

The consumption dataset presented a special challenge, as it had to be often built based on estimates from 

surrogate trade data, and an evaluation of the quality of the trade data collected by EUROSTAT has revealed 

major and persistent inconsistencies in the various MSs intra-EU trade statistics [32]. However, the 
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comparison with the WHO GEMS/Food data showed that this approach produced valid results, as 19 out of 

24 countries had a PSI of 0.9 or higher and three were larger than 0.8, suggesting that the consumption 

profiles composed using EUROSTAT data are highly similar to the original GEMS/Food profiles for most 

countries. An exception is noted for Cyprus, which is likely to be a reflection of the large proportion of data 

that needed extrapolation, and which may have an effect on the attribution outcomes for that country. 

Nonetheless, the dataset as a whole, there showed 91% similarity. 

In conclusion, as long as a thorough data evaluation is performed and specific countries and reservoirs with 

insufficiently representative data are excluded, public surveillance and monitoring data from multiple 

countries can be used for scientific purposes, particularly for microbial subtyping-based source attribution 

methods. This could be a first step to the conduction of source attribution studies in countries where no 

country-wide baseline studies or serological surveys have been conducted, but where programs for 

Salmonella monitoring in food or surveillance in humans are currently up and running. 
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Tables 

Table 1. Availability of data from the different datasets by country. 

Source Data source
(a)

 Countries Additional data 

sources 

Laying hens EUSR data 2008 AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, 

FR, GR, HU, IE, IT, LT, LU, LV, NL, NO, PL, 

PT, RO, SE, SI, SK, UK 

 

Cattle EUSR data 2007-2009 AT, BE, BG, CH, CZ, DE, DK, EE, ES, FI, FR, 

GR, HU, IE, IT, LT, LU, LV, NL, NO, PL, PT, 

RO, SE, SI, SK, UK 

FR: David, J (2009); 

LV: EUSR 2006 

Pigs BS 2006, lymph node AT, BE, BG, CY, CZ, DE, DK, EE, ES, FI, FR, 

GR, HU, IE, IT, LT, LU, LV, NL, NO, PL, PT, 

SE, SI, SK, UK 

 

Broiler BS 2008, carcasses AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, 

FR, GR, HU, IE, IT, LT, LU, LV, MT, NL, NO, 

PL, PT, RO, SE, SI, SK, UK 

GR: BS 2005/6 

Turkey BS 2006, Fattening 

turkeys 

AT, BE, BG, CY, CZ, DE, DK, EE, ES, FI, FR, 

GR, HU, IE, IT, LT, LU, LV, NL, NO, PL, PT, 

SE, SI, SK, UK 

EE: EUSR 2006; LU: 

EUSR 2008 LV:  EUSR 

2006;  

Human cases Foodborne outbreak 

data, 2007-2009 

AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, HU, 

IE, LT, LV, NL, NO, PL, PT, RO, SE, SI, SK 

 

 TESSy case-based and 

aggregated data, 2007-

2009
(b)

 

AT, BE, BG, CY, CZ, DE, DK, EE, ES, FI, FR, 

GR, HU, IE, IT, LT, LU, LV, MT, NL, NO, PL, 

PT, RO, SE, SI, SK, UK 

 

 National monitoring 

and laboratory 

surveillance data 2007-

2009
(c)

 

PL, PT, NL, IT, DE  

(a) If data were missing from a specific source in a country, used surrogate data sources are indicated. 

(b) Bulgaria reported human cases, but no serovar information was available. 

(c) Obtained through direct contact with Member States. 
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Table 2. Number of countries in which each serovar is present by data source. 

Serovar Number of countries 
(a)

 Total 

sources 

 TESSy FBO
(b)

 Broilers Pork Turkey Layers Cattle (n=7) 

S. Enteritidis* 27 19 15 18 17 20 25 7 

S. Typhimurium* 27 16 12 23 12 16 25 7 

S. Virchow* 26 3 7 5 2 11 1 7 

S. Infantis* 26 3 15 16 4 13 8 7 

S. Newport* 26 4 3 7 9 7 2 7 

S. Derby* 25 1 3 19 11 5 10 7 

S. Agona* 24 2 10 12 8 9 5 7 

S. Hadar* 24 2 10 3 10 7 3 7 

S. Bredeney 24 2 8 9 6 5 2 7 

S. Kentucky* 22 0 6 0 1 2 0 4 

S. Braenderup 23 0 2 3 2 7 1 6 

S. Saintpaul 22 1 2 2 11 4 1 7 

S. Brandenburg 23 1 1 7 0 4 2 6 

S. Montevideo 22 0 8 9 3 10 4 6 

S. London 22 0 1 8 1 1 2 6 

S. Bovismorbificans* 22 4 0 7 0 1 2 5 

S. Stanley 21 1 0 0 0 0 0 2 

S. Mbandaka 20 1 11 4 2 10 4 6 

S. Rissen 20 0 0 5 0 7 5 4 

S. Anatum 19 1 5 9 4 5 1 7 

S. Livingstone 19 0 5 5 1 10 4 6 

S. Heidelberg 20 2 2 1 3 3 0 6 

S. Ohio 18 1 5 6 0 3 2 6 

S. Kottbus 18 0 4 2 9 1 2 6 

S. Dublin 16 1 0 2 0 1 14 5 

(a)  n(TESSy)=27; n(FBO)=22;  n(Broilers)=29; n(Pork)=26; n(Turkey)=26; n(Layers)=28; n(Cattle)=27. 

(b)  FBO: Foodborne outbreaks. 
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Table 3. Number and percentage of reassigned records in humans. 

Country Incomplete identification Aggregated data(d) Unknown(e) Total 

 
Species/genus(a) Subspecies(b) Serogroup(c) 

    
Reported Reassigned 

 
n % n % n % n % n % 

 
n % 

AT 
  

2 0.02 132 1.56 287 3.38 362 4.27 8,487 783 9.23 

BE 
      

172 1.55 
  

11,066 172 1.55 

BG - - - - - - - - - - 3,899 - - 

CY 2 0.42 
  

9 1.91 
  

101 21.44 471 112 23.78 

CZ 
        

586 1.51 38,842 586 1.51 

DE 
  

462 0.36 8,057 6.33 5,782 4.54 1,628 1.28 127,330 15,929 12.51 

DK 
  

2 0.03 3 0.04 25 0.33 342 4.56 7,497 372 4.96 

EE 
    

25 1.86 28 2.09 
  

1,341 53 3.95 

ES 
      

2,504 20.81 2,091 17.38 12,033 4,595 38.19 

FI 19 0.23 3 0.04 23 0.28 6 0.07 22 0.27 8,228 73 0.89 

FR 
      

2,185 10.75 
  

20,319 2,185 10.75 

GR 
    

104 5.40 3 0.16 1,309 67.93 1,927 1,416 73.48 

HU 
  

57 0.30 191 1.00 908 4.76 2 0.01 19,091 1,158 6.07 

IE 1 0.08 
    

11 0.87 68 5.38 1,264 83 6.57 

IT 25 0.24 
  

6 0.06 
  

1,080 10.58 10,205 1,111 10.89 

LT 
    

56 0.73 156 2.04 191 2.50 7,643 403 5.27 

LU 
        

63 13.15 479 63 13.15 

LV 
      

53 1.99 608 22.81 2,665 661 24.80 

MT 20 5.39 
      

40 10.78 371 60 16.17 

NL 
  

210 5.04 
  

84 2.02 
  

4,168 294 7.05 

PL 
      

1204 3.89 
  

30,963 1,204 3.89 

PT 
          

1,513 0 0.00 

RO 
      

1,218 51.81 766 32.58 2,351 1,984 84.39 

SE 
  

68 0.60 
  

411 3.65 307 2.73 11,265 786 6.98 

SI 
    

63 2.10 
    

3,002 63 2.10 

SK 3 0.02 
  

154 0.79 84 0.43 87 0.45 19,399 328 1.69 

UK 7 0.02 
  

149 0.41 4 0.01 1,009 2.75 36,666 1,169 3.19 

EU total 77 0.02 804 0.20 8,975 2.29 15,125 3.85 10,662 2.72 392,485 35,643 9.08 

CH - - - - - - - - - - - - - 

NO 
      

21 0.44 10 0.21 4825 31 0.64 

Total 77 0.02 804 0.20 8,975 2.26 15,146 3.81 10,672 2.69 397,310 35,674 8.98 

(a) Salmonella spp, Salmonella enterica, Salmonella not typed, Salmonella untyped  

(b) Salmonella enterica enterica, Subspecies I 

(c) B, C, D, E, D1, C1, C2-C3, D1, E1 

(d) ”Others”, ”Other serovars” 

(e) ”Unknown” 
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Table 4. Number and percentage of reassigned records in foodborne Salmonella outbreaks. 

Country Reported 

Incomplete identification Total 

Species/genus
(a)

 Serogroup
(b)

 Reported Reassigned 

n % n % 
 

n % 

AT Yes 
    

421 0 0.00 

BE Yes 
    

91 0 0.00 

BG No 
    

- - - 

CY No 
    

0 0 0.00 

CZ Yes 
    

337 0 0.00 

DE Yes 13 0.55 
  

2,383 13 0.55 

DK Yes 
    

2,224 0 0.00 

EE Yes 
    

157 0 0.00 

ES Yes 
    

469 0 0.00 

FI Yes 
    

189 0 0.00 

FR Yes 1218 46.68 
  

2,609 1,218 46.68 

GR No 
    

0 0 0.00 

HU Yes 86 4.48 
  

1,921 86 4.48 

IE Yes 
    

67 0 0.00 

IT No 
    

0 0 0.00 

LT Yes 
    

371 0 0.00 

LU No 
    

0 0 0.00 

LV Yes 201 39.26 
  

512 201 39.26 

MT No 
    

0 0 0.00 

NL Yes 12 1.71 26 3.71 700 38 5.43 

PL Yes 
  

29 0.55 5,310 29 0.55 

PT Yes 
    

90 0 0.00 

RO Yes 26 5.95 
  

437 26 5.95 

SE Yes 8 2.94 
  

272 8 2.94 

SI Yes 
    

692 0 0.00 

SK Yes 
    

583 0 0.00 

UK No 
    

0 0 0.00 

EU total - 1,564 7.89 55 0.28 19,835 1,619 8.16 

CH Yes 
    

6 0 0.00 

NO Yes 
    

95 0 0.00 

Total - 1,564 7.85 55 0.28 19,936 1,619 8.12 

(a) Salmonella enterica enterica, Subspecies I 

(b) B, C, D, E, D1, C1, C2-C3, D1, E1 
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Table 5. Number of cases reported in the original datasets as travel-related, domestic or unknown and the 

total used in the model, assuming that any case not specifically mentioned as travel-related was domestic. 

Country Reported Total used 

Travel Domestic Unknown Travel Domestic 

AT 988 7,499 0 988 7,499 

BE 0 11,066 0 0 11,066 

BG - - - - - 

CY 18 428 25 18 453 

CZ 657 38,185 0 657 38,185 

DE 6,683 114,362 6,285 6,683 120,647 

DK 1,366 2645 3,486 1,366 6,131 

EE 95 1246 0 95 1,246 

ES 0 12,033 0 0 12,033 

FI 6,845 1059 324 6,845 1,383 

FR 0 0 20,319 0 20,319 

GR 45 1763 119 45 1,882 

HU 29 19,062 0 29 19,062 

IE 384 343 537 384 880 

IT 132 692 9,381 132 10,073 

LT 21 0 7,622 21 7,622 

LU 46 431 2 46 433 

LV 32 1,817 816 32 2,633 

MT 4 365 2 4 367 

NL 497 3,671 0 497 3,671 

PL 16 0 30,947 16 30,947 

PT 5 0 1,508 5 1,508 

RO 0 0 2,351 0 2,351 

SE 8,752 2,207 306 8,752 2,513 

SI 0 0 3,002 0 3,002 

SK 146 19,253 0 146 19,253 

UK 8,921 8,084 19,661 8,921 27,745 

EU total 35,682 246,211 106,693 35,682 356,803 

CH - - - - - 

NO 3,721 871 233 3,721 1,104 

Total 39,403 247,082 106,926 39,403 357,907 
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Table 6: Number of sampling units submitted and positivity percentages in animal reservoirs in the EU and Norway. 

Country Broiler carcasses
(a)

 Pigs – lymph nodes Laying hen flocks Turkeys – fattening flocks Cattle 
(b)

 

 Submitted Positives Submitted Positives Submitted Positives Submitted Positives Submitted Positives 

  n %  n %  N %  N %  N % 

AT 408 10 2.5 617 13 2.1 1,966 49 2.5 1,010 141 14.0 3,037 12 0.4 

BE 380 77 20.3 601 78 13.0 649 76 11.7 370 40 10.8 81 81 100.0 

BG 316 85 26.9 176 35 19.9 119 0 0.0 85 0 0.0 477 3 0.6 

CY 357 38 10.7 359 47 13.1 40 5 12.5 70 28 40.0 - - - 

CZ 422 23 5.5 654 38 5.8 449 40 8.9 970 192 19.8 696 24 3.4 

DE 432 76 17.6 2,567 325 12.7 6304 220 3.5 1,475 108 7.3 4,053 163 4.0 

DK 396 0 0.0 998 80 8.0 508 3 0.6 294 1 0.3 7,915 9 0.1 

EE 102 0 0.0 420 27 6.4 52 4 7.7 2 0 0.0 1,550 10 0.6 

ES 389 58 14.9 2,621 806 30.7 845 376 44.5 1,910 747 39.1 258 29 11.2 

FI 369 0 0.0 419 0 0.0 950 1 0.1 675 0 0.0 3,415 7 0.2 

FR 422 32 7.6 1,163 215 18.5 3067 187 6.1 1,630 157 9.6 - - 2.4 

GR 1,215 180 14.8 345 73 21.2 112 35 31.3 220 16 7.3 56 1 1.8 

HU 321 275 85.7 656 75 11.6 866 101 11.7 1,465 915 62.5 178 31 17.4 

IE 394 39 9.9 422 65 15.4 204 2 0.98 1,295 294 22.7 10,121 430 4.2 

IT 393 66 16.8 709 116 16.4 821 171 20.8 1,370 277 20.2 1,797 17 0.9 

LT 374 26 6.9 461 8 1.7 13 0 0.0 315 14 4.4 172 2 1.2 

LU 13 0 0.0 313 50 16.0 7 1 14.3 1 0 0.0 83 7 8.4 

LV 122 6 4.9 392 21 5.4 69 14 20.3 1 0 0.0 25 0 0.0 

MT 367 77 21,0 - - - - - - - - - - - - 

NL 429 43 10.0 1,087 92 8.5 2346 62 2.6 860 77 9.0 330 18 5.5 

PL 419 107 25.5 1,176 75 6.4 1533 192 12.5 1,610 285 17.7 130 0 0.0 

PT 421 47 11.2 658 156 23.7 227 83 36.56 525 26 5.0 56 0 0.0 

RO 357 17 4.8 - - - - - - - - - 521 3 0.6 

SE 410 1 0.2 394 6 1.5 724 5 0.7 70 0 0.0 3,728 60 1.6 

SI 413 7 1.7 431 27 6.3 172 18 10.5 655 100 15.3 386 1 0.3 

SK 422 91 21.6 385 30 7.8 138 10 7.2 125 15 12.0 95 0 0.0 

UK 401 14 3.5 639 139 21.8 5523 67 1.2 1,570 401 25.5 895 895 100.0 

EU Total 9,249 1,215 13.1 18,663 2,596 13.9 27,704 1630 5.9 18,514 3,834 20.7 40,055 1,803 4.5 

NO 396 0 0.0 408 1 0.2 1080 0 0.0 360 0 0.0 2,589 1 0.0 

Total 10,035 1,225 12.2 19,072 2,598 13.6 28,784 1630 5.7 18,849 3,834 20.3 42,644 1,804 4.2 

(a) In the specific case of Greece, broiler flocks.  (b) In the specific case of Denmark, carcass samples collected at the slaughterhouse.
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Table 7. Number and percentage of records reassigned to serovars in animal reservoirs. 

 
Country Incomplete identification Aggregated (d) Total 

  

Species/genus(a) Subspecies(b) Serogroup(c) 

 

Positives Reassigned 

  

n % n % n % n % 

 

n % 

B
ro

il
er

s 

BE 15 19.48 

      

77 15 19.48 

IT 13 19.70 

      

66 13 19.70 

LT 15 57.69 

      

26 15 57.69 

MT 10 12.99 

      

77 10 12.99 

NL 1 2.33 

      

43 1 2.33 

P
ig

s 

BG 

  

4 11.43 

    

35 4 11.43 

CY 5 10.64 3 6.38 1 2.13 

  

47 9 19.15 

DE 5 1.54 

  

64 19.69 

  

325 69 21.23 

EE 

  

4 14.81 

    

27 4 14.81 

ES 62 7.69 

      

806 62 7.69 

FR 5 2.33 

      

215 5 2.33 

GR 3 4.11 8 10.96 

    

73 11 15.07 

IE 1 1.54 

      

65 1 1.54 

IT 41 35.34 6 5.17 

    

116 47 40.52 

LV 2 9.52 

      

21 2 9.52 

NL 2 2.17 2 2.17 

    

92 4 4.35 

SI 4 14.81 

      

27 4 14.81 

T
u

rk
ey

s 

CY 

    

5 17.86 

  

28 5 17.86 

DE 

    

11 10.19 

  

108 11 10.19 

DK 1 100.00 

      

1 1 100.00 

HU 1 0.11 2 0.22 

    

915 3 0.33 

IT 

  

8 2.89 

    

277 8 2.89 

SI 

    

1 1.00 

  

100 1 1.00 

L
a

y
er

s 

AT 2 4.08 

      

49 2 4.08 

BE 3 3.95 

  

3 3.95 

  

76 6 7.89 

CY 

    

1 20.00 

  

5 1 20.00 

DE 13 5.91 

    

23 10.45 220 36 16.36 

ES 186 49.47 

      

376 186 49.47 

FR 20 10.70 

    

6 3.21 187 26 13.90 

HU 

      

26 25.74 101 26 25.74 

IT 

      

115 67.25 171 115 67.25 

PL 

      

29 15.10 192 29 15.10 

PT 

      

9 10.84 83 9 10.84 

UK 

      

16 23.88 67 16 23.88 

B
o

v
in

es
 

BE 3 3.70     4 4.94     81 7 8.64 

DE 4 2.45 

    

36 22.09 163 40 24.54 

DK 4 44.44 

      

9 4 44.44 

ES 13 44.83 

      

29 13 44.83 

HU 25 80.65 

      

31 25 80.65 

IT 4 23.53 

      

17 4 23.53 

LU 1 14.29 

      

7 1 14.29 

NL 1 5.56 

      

18 1 5.56 

SE 6 10.00 

      

60 6 10.00 

UK 824 92.07 

      

895 824 92.07 

(a) Salmonella spp, Salmonella enterica, Salmonella not typed, Salmonella untyped  

(b) Salmonella enterica enterica, Subspecies I 

(c) B, C, D, E, D1, C1, C2-C3, D1, E1 

(d) ”Others”, ”Other serovars” 
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Table 8. Comparison of the relative proportion of consumption of pork, poultry meat and table eggs in the 

WHO GEMS/Food data and the surrogate values calculated from EUROSTAT data. 

Country WHO GEMS/Food (%) EUROSTAT (%) PSI 

Poultry Pig Egg Poultry Pig Egg 

AT 16,7 70,9 12,4 18,8 68,8 12,4 0,98 

BE 32,3 50,5 17,2 28,7 58,1 13,2 0,92 

CY 38,7 48,3 13,0 96,8 2,9 0,3 0,42 

CZ 28,6 52,7 18,6 28,4 52,9 18,7 1,00 

DE 17,4 67,0 15,6 24,1 63,2 12,7 0,93 

DK 19,4 64,2 16,5 13,1 81,3 5,6 0,83 

EE 33,5 47,6 18,8 33,4 49,7 16,9 0,98 

ES 25,8 61,0 13,2 30,9 56,2 12,9 0,95 

FI 25,8 58,7 15,5 24,5 49,9 25,6 0,90 

FR 32,9 47,7 19,4 42,1 39,5 18,4 0,91 

GR 31,5 53,1 15,4 33,2 47,9 18,9 0,95 

HU 33,2 49,8 17,0 41,0 42,0 17,1 0,92 

IE 36,3 54,7 9,0 40,9 45,7 13,4 0,91 

IT 24,4 59,9 15,7 31,0 53,9 15,1 0,93 

LT 24,6 51,4 23,9 30,7 51,1 18,2 0,94 

LU 47,8 44,3 8,0 32,2 45,7 22,1 0,84 

LV 30,3 44,7 25,0 33,6 43,0 23,4 0,97 

NL 16,2 59,6 24,2 31,0 51,5 17,5 0,85 

PL 23,8 61,7 14,5 31,3 56,6 12,0 0,92 

PT 32,7 54,2 13,1 34,8 50,7 14,5 0,97 

SE 20,9 61,3 17,8 22,3 58,6 19,1 0,97 

SI 37,9 50,9 11,2 44,6 39,2 16,2 0,88 

SK 36,5 45,8 17,7 28,2 48,7 23,1 0,92 

UK 44,2 38,7 17,1 48,0 33,7 18,3 0,95 

Overall PSI 0.91 
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Figure 1: Relative proportions of the most frequent serovars in total reported (R) and outbreak (O) cases in humans in the EU and Norway, 2007-2009. 

The totals for each country in the datasets are shown at the top of the bar.  
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Figure 2. Diagram illustrating the construction of the final dataset for source attribution. For animal 

reservoirs and outbreaks, each gray block represents a dataset. For reported human cases, white blocks 

represent primary datasets originally provided to compose the gray blocks.  
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Summary  

A Bayesian modeling approach comparing the occurrence of Salmonella serovars in animals and humans 

was used to attribute salmonellosis cases to broilers, turkeys, pigs, laying hens, travel and outbreaks in 24 

European Union countries. Salmonella data for animals and humans, covering the period from 2007 – 2009, 

were mainly obtained from studies and reports published by the European Food Safety Authority. 

Availability of food sources for consumption was derived from trade and production data from the European 

Statistical Office. Results showed layers as the most important reservoir of human salmonellosis in Europe, 

with 42.4% (7,903,000 cases, 95% Credibility Interval 4,181,000 – 14,510,000) of cases, 95.9% of which 

caused by S. Enteritidis. In Finland and Sweden, most cases were travel-related, while in most other 

countries the main sources were related to the laying hen or pig reservoir, highlighting differences in the 

epidemiology of Salmonella, surveillance focus and eating habits across the EU. 
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INTRODUCTION 

Unsafe food is related to several kinds of diseases, ranging from diarrhoeal syndromes to various forms of 

cancer.  It is estimated that food- or waterborne diarrhoeal diseases are responsible for 2.2 million deaths per 

year worldwide, 1.8 million of which are children [1].  Salmonella enterica is considered one of the leading 

causes of gastroenteritis and bacteremia in the world [2,3], being estimated to cause 93.8 million human 

cases and 155 thousand deaths every year [4]. In the European Union (EU),  S. Enteritidis and S. 

Typhimurium are the most frequently reported serovars, but a wide range of others frequently cause disease 

in humans and thus are of public health significance [3,5]. Human infection is most often foodborne, but 

other routes of infection, namely contact with animals and environmental transmission, have been identified 

[6,7]. 

To design and prioritize effective food safety interventions, it is important to identify which foods are 

vehicles for specific illnesses [8]. This process is called source attribution, and it can be based on different 

approaches, such as analysis of outbreak data, analysis of sporadic cases, microbial subtyping, comparative 

exposure assessment, intervention studies and expert elicitations [8]. Methods for source attribution are 

intended to provide countries with tools for priority setting in relation to human foodborne and zoonotic 

diseases both at national and regional level, being a critical tool for decision-making aimed at reducing 

human zoonotic infections faster and more effectively [9]. 

Hald et al. [10] developed a Bayesian approach based on microbial subtyping for attribution of human cases 

of salmonellosis to animal reservoirs in Denmark.  It made use of Denmark’s extensive surveillance and data 

collection system to identify the main Salmonella subtypes responsible for human cases and compare them 

with the ones found in six animal-food sources. The model was further developed by Pires and Hald [11] to 

accommodate information from different time periods, and adapted by Mullner et al. [12] to apply it to 

Campylobacter. 

Other EU Member States (MS) have performed Salmonella source attribution studies based on the cited 

methods, such as Sweden [13] and the Netherlands [14]. A EU-wide source attribution approach based on 

outbreak data was also developed [15]; this model attributed disease at the EU region level and did not 
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provide estimates at country level. So, the relative contribution of different food sources for human 

salmonellosis in the remaining individual countries within Europe had still not been assessed.  

This paper presents a study in which the Hald model was adapted to use EU-harmonized data reported by 24 

MSs to attribute human cases of salmonellosis to their respective animal reservoirs at country and EU-level. 

 

METHODS 

Data availability 

All utilized data covered the period between 2007 and 2009. EU animal-food production and trade data were 

available as published by the Statistical Office of the European Union (EUROSTAT) [16]. Data on the 

prevalence of Salmonella serovars in animals and food were available from the EU-wide Baseline Studies 

(BS) conducted in different animal species [17, 18, 19, 20] and from the European Union Summary Reports 

(EUSR) as published by the European Food Safety Authority (EFSA) from 2006 to 2009 [21, 22, 23, 24]. 

Data on the number and serovar distribution of human cases reported to the European Surveillance System 

(TESSy) from 2007 to 2009 were extracted on 6
th
 of July 2010 and provided by the European Centre for 

Disease Prevention and Control (ECDC) through EFSA, except for Poland and Portugal, which directly 

provided additional datasets with more detailed serovar information.  Human data included both case-based 

and aggregated data and were complemented with other data sources (e.g. national monitoring or laboratory 

surveillance data not published in the EUSRs) when necessary and possible. One of the main obstacles for 

the use of these data is the underreporting of cases. It is generally understood that the real (and generally 

unknown) number of illnesses in the population is considerably larger than the number of cases reported in 

the surveillance system. Also, the level of underreporting varies strongly between countries, depending on 

differences in organization and effectiveness of local surveillance systems [25, 26]. This was taken into 

consideration by multiplying the country-specific underreporting factors (UFs) estimated by Havelaar et al. 

[27] to the reported sporadic cases. .The underreporting factors were fitted as lognormal distributions, 

following the methodology described in Hald et al. [28]. The number of cases originally reported in the 

datasets obtained, the underreporting factors and the resulting adjusted totals can be seen in Table 1. 
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Data management 

Isolates not classified up to the serovar level or reported in aggregated form were reassigned to specific 

serovars according to proportions observed in previous studies, in the same dataset or in other references, 

depending on the availability of data in each case. Isolates classified as serogroups were distributed among 

serovars pertaining to them, in accordance with the Kauffman-White-Le Minor Scheme 9
th
 edition [29]. For 

sporadic human cases, the main reference dataset used to obtain the proportions for the reassignment was the 

WHO Global Foodborne Infections Network (GFN) Country Databank (CDB) [30], which contains the 15 

most commonly identified Salmonella serovars among human and non-human sources in 84 countries. 

Animal isolates were reassigned based on proportions found in the BS datasets. Isolates identified as 

monophasic variants of S. Typhimurium (e.g. S.1,4,[5],12:i:- or S.4,[5],12:i:-) were reassigned to S. 

Typhimurium [31]. Outbreak-related cases were reassigned using the proportions observed in the outbreak 

dataset, because some serovars may be more prone to generate outbreaks than others, and thus the 

proportions observed in reported sporadic cases may not apply. At the EU-level, a total of 9.1% of sporadic 

cases had to be reassigned to specific serovars, varying from zero in Portugal to 73.5% in Greece. Records 

with travel information referred as “unknown” and considered as domestic cases corresponded to 27% of all 

cases reported, varying from zero in Austria, Belgium, the Czech Republic, ,Estonia, Hungary, the 

Netherlands, Slovakia and Spain, to 100% in France. No outbreak cases were reported by Cyprus, Greece, 

Italy, Luxembourg, Malta or the United Kingdom. Among countries which reported outbreaks, the total 

percentage of reassigned cases was 8.2%, ranging from zero in 13 countries to 46.7% in France. Concerning 

the animal data, reassigned records corresponded to 4.4% of the total for broilers, 8.6% for pigs, 0.8% for 

turkeys, 27.8% for layers and 51.3% for cattle. The number of countries in which reassignments were 

necessary varied from five in broilers to 11 in pigs, and the largest reassigned percentage was observed for 

cattle in the UK (92.1%). 

Concerning the consumption data, the domestic amount of a product available in a country was estimated as 

Domestic Production minus Export, whereas the amount of imported food available for consumption in MS 

A originating from MS B was estimated as Import minus Re-export (when re-export was relevant). That was 
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done in order to consider the intra-community food trade and its impact on the incidence of human 

salmonellosis in importing countries. Trade between EU countries and third countries was not considered. 

Based on data quality, food-animal sources included in the final model were broilers, pigs, turkeys and 

laying hens (as the animal reservoir for eggs). Since neither harmonized EU monitoring data nor BS data 

were available for the cattle reservoir, this source was excluded from the final model due to poor data 

quality, which would significantly compromise the validity of the model results. As for MSs, 24 were 

included in the model: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Poland, Portugal, Slovakia, 

Slovenia, Spain, Sweden, The Netherlands and the United Kingdom. Twenty-two serovars were selected to 

be specifically addressed, based on their presence and importance in humans and in the main animal 

reservoirs in a five-year period: S. Agona, S. Anatum, S. Bovismorbificans, S. Braenderup, S. Brandenburg, 

S. Bredeney, S. Derby, S. Enteritidis, S. Hadar, S. Heidelberg, S. Infantis, S. Kentucky, S. Kottbus, S. 

Livingstone, S. London, S. Mbandaka, S. Montevideo, S. Newport, S. Rissen, S. Saintpaul, S. Typhimurium 

and S. Virchow. Albeit important in humans in most of the 24 countries, S.Dublin, S. Ohio and S. Stanley 

were not included in the list because S. Stanley was not isolated from the animal sources considered for the 

source attribution model, and S. Dublin and S. Ohio became irrelevant after the cattle reservoir was removed.  

Serovars not included in the above list were aggregated as “Others”. 

Data management was performed using SAS Enterprise Guide, SAS Institute, SAS/STAT® User’s Guide, 

Version 8, Cary, NC: SAS Institute Inc., 1999. Data origin and countries providing information for each 

food-animal reservoir, reported human cases and cases related to foodborne Salmonella outbreaks are 

summarized in Figure 1. 

 

Model overview 

The presented approach for source attribution by microbial subtyping works by comparing the number of 

human cases caused by different subtypes of a pathogen with the distribution of the same subtypes in 

different food-animal sources, utilizing a collection of temporally and spatially related isolates from multiple 

sources and humans.  
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The model attributes sporadic domestic cases to food-animal sources.  A sporadic case is defined as a subject 

that could not be associated with a recognized foodborne disease outbreak. Outbreak-related cases are added 

to the final results of the model, being attributed to the source implicated in the outbreak, if that is known. If 

not, they are considered outbreaks with unknown source. As Salmonella subtypes are clonally distributed 

among animal hosts [10], the model attribute cases at the animal reservoir level. This means that in general, 

cases caused by pork are attributed to pigs, eggs to layers, chicken meat to broilers and so on, but if a pork 

food preparation is contaminated during processing with a subtype originally found in broilers, the resulting 

cases are attributed to broilers, not pigs. 

The model was built in a Bayesian framework based on the method described by Hald et al. [10]. In that 

model, Salmonella subtype distributions in animals in a given country in a certain time period are compared 

with the subtype distribution in humans in the same country in the same period.  

The objective was to estimate the number of reported human cases that can be attributed to each source in 

each country, based on 1) the number of laboratory-confirmed infections caused by each Salmonella serovar 

in each country, including possible outbreak or travel information for each case, 2) prevalence of each 

serovar in the different sources in each country, and 3) amount of food source available for consumption in 

each country broken down by the country of origin. Due to the non-availability of animal data for the same 

years as the human data, it was decided to use a cross-sectional approach, using data from the EFSA baseline 

studies and assuming that the serovar profiles presented in them would be representative of the three-year 

period the human data referred to. The model was adapted to accommodate data from multiple countries, 

thereby adding a third dimension to the original model (in addition to subtype and food-animal source-

related factors), and was based on the distribution of serovars in humans and food-animal sources. Another 

addition to the original model is the use of trade data as surrogate for consumption. This creates a scenario in 

which it is possible to differentiate the country of origin of the food from the country where the human cases 

were reported, and apply the corresponding country-specific Salmonella prevalences to the sources. As a 

consequence, it is also possible to estimate the number of cases reported in a country which are attributable 

to a source from other country(ies).   
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Model parameters and specifications 

The model takes into account the number of cases caused by a serovar, the prevalence of each serovar in 

each source in each country, the underreporting multipliers in each country, and relative impact of a set of 

unknown factors, as described in Hald et al. [10]. The unknown factors were included as multi-parameter 

priors, and account for the differences in the ability of different subtypes to cause disease and of different 

sources to act as vehicles for infection. Multiple loops were included to accommodate data from the 24 

countries. An overview of the model parameterization can be drawn as: 

acj ~ Uniform (0,100) 

qi ~ Uniform (0,100) 

 λci ~ Poisson (oci),  

λci =  λckji 

λckji = pkij * mckj * acj * qi  

where: 1) λckji is the expected number of cases per serovar i and source j reported in country c and caused by 

food produced in country k; 2) pkij is the prevalence of serovar i in source j in country k; 3) mckj is the amount 

of source j available for consumption in country c produced in country k; when a source is domestically 

produced in the country of attribution, c=k;  4) acj is the source-dependent factor for source j in country c; 5) 

qi is the subtype-dependent factor for serovar i; 6) and ufc is the underreporting factor for the country of 

reporting. The source-dependent factor acj was assumed to vary between countries, accounting for variability 

in consumption patterns and preferences not captured by mckj, also including general variations between 

sources, e.g, bacterial load/concentration in the food and processing, handling or preparation practices. The 

subtype-dependent factor qi is a one-dimensional parameter, meaning that it is a property of the Salmonella 

serovar and assumed independent of the country of infection. The qi prior for S. Enteritidis is defined as 1, 

and all other qi values are estimated relatively to this one. The amount of food source available for 

consumption in the country where a Salmonella case was reported considers both domestically produced and 

imported foods (mckj). The number of human sporadic and domestic cases attributed to each source per 

country (λcji) is estimated assuming a Poisson distribution of the observed number of sporadic cases per 
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subtype per country (oci). After attribution, sporadic reported cases were multiplied by the correspondent UF 

in each MS. Model parameters are presented in Table 2. 

The model was built in WinBUGS 1.4 (http://www.mrc-bsu.cam.ac.uk/bugs/), which uses Markov Chain 

Monte Carlo (MCMC) with Gibbs sampling as a default to obtain summary values for posterior distributions. 

Five independent chains ran for 40,000 iterations each to obtain the values for acj and qi. Each chain had a 

different set of starting values for the priors, widely dispersed in the target distribution. Chain convergence 

was monitored using the methods described by Gelman and Rubin [32] and was considered to have occurred 

when the variance between the different chains was no larger than the variance within each individual chain, 

and when the chains had reached a stable level. 

 

RESULTS 

The most important source of human salmonellosis at the EU level was estimated to be the laying hen 

reservoir (i.e. eggs), with 42.4% (7,903,000 cases, 95% Credibility Interval (CI) 4,181,000 – 14,510,000) of 

cases, followed by 31.1% attributed to pigs (5,800,000 cases, 95% CI 2,973,000 – 11,100,000). Broilers and 

turkeys were estimated to be less important sources of Salmonella, contributing with 12.6% (2,350,000 

cases, 95% CI 736,300 – 6,194,000) and 3.8% (702,400 cases, 95% CI 325,500 – 1,590,000), respectively. A 

total of 1.6% (292,400 cases, 95% CI 150,700 – 562,700) of all salmonellosis cases were reported as being 

travel-related, and 0.1% (13,848) of cases were reported as being part of outbreaks with unknown source. 

Cases which could not be attributed to any of the sources included in the model corresponded to 8.5% of the 

total (1,578,000 cases, 95% CI 828,400 – 2,951,000). 

The most important serovars contributing to human salmonellosis originating from the animal reservoirs are 

presented in Table 3. Of all S. Enteritidis infections, 63% (7,504,000 cases, 95% CI 3,964,000-13,770,000) 

were attributed to laying hens, whereas 90.8% of S. Typhimurium originated from pigs (2,950,000 cases, 

95% CI 1,510,000-5,663,000). Compared to infections attributed to layers and pigs, a large proportion of 

cases were caused by other serovars in other sources, such as 4.5% S. Infantis in broilers (106,600 cases, 

95% CI 32,560-284,500) and 9.2% S. Newport (226,296 cases, 95% CI 84,379-567,930) or 4.5% S. 
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Saintpaul (33,580 cases, 95% CI 18,052-62,443) in turkeys. In those sources, these serovars were not the 

most frequently associated with cases, but still constituted a significant burden.  

When looking at attribution within specific countries, 13 MSs (Austria, Czech Republic, Estonia, Germany, 

Greece, Hungary, Latvia, Lithuania, Luxembourg, Slovenia, Slovakia, Spain and the United Kingdom) had 

the laying hen reservoir estimated as the most important source of salmonellosis. Pigs were the larger 

contributor for salmonellosis in eight (Belgium, Cyprus, Finland, France, Ireland, Italy, Poland and Sweden) 

MS, and the proportion of disease attributed to layers and pigs were similar in the Netherlands. Turkeys and 

broilers had a localized importance in Denmark and Portugal, respectively. The majority of Salmonella 

infections in Finland, Sweden and, to a lower extent, Denmark Ireland and the UK were reported as travel-

related (Figure 2). Appendix A contains the country-specific attribution tables. 

As mentioned earlier, a feature of this model is the ability to estimate the country of origin of cases attributed 

in other countries, as country-specific prevalences and amounts are used. When considering all sources 

together, Poland was estimated to be the most important source-country for human salmonellosis in the EU, 

contributing with 21.3% of cases (3,563,710 cases, 95% CI 911,750 – 10,818,900), followed by 18.4 from 

Spain (3,081,090 cases, 95% CI 898,170 – 9,056,800) and 14.5 from Portugal (2,422,142 cases, 95% CI 

361,368 – 8,508,397) (Figure 16). Country-specific estimates with 95% Credibility Intervals are shown in 

Appendix B. Cases reported in the country of origin are also included in the total, which means that the 

3,563,710 cases “originated” from Poland include cases reported in Poland, not only in other countries. 

Looking at the numbers in Appendix B it can be seen that the impact of the country of origin varied with the 

source. As an example, 55.6% of cases (1,305,000 cases, 95% CI 198,500 – 4,535,000) attributed to broilers 

were estimated to originate” from Portugal, while cases attributed to turkeys were mostly related to Spain 

(43.1% or 302,600 cases, 95% CI 55,350 – 1,029,000) and pigs to Poland (24.2% or 1,402,000 cases, 95% 

CI 257,000 – 4,721,000) and Spain (22.5% or 1,306,000 cases, 95% CI 423,700 – 3,556,000). The majority 

of cases attributed to layers originated from Greece (21.5% or 1,701,000 cases, 95% CI 256,400 – 

5,944,000), Spain (17.9% or 1,414,000 cases, 95% CI 406,000 – 4,286,000) and Poland (16.3% or 1,287,000 

cases, 95% CI 492,000 – 3,162,000). 
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Concerning the factors simulated to estimate the ability of food sources to act as a vehicle for disease (acj) or 

of different serovars to cause disease (qi ), layers had the highest value of acj in 11 countries (Austria, Czech 

Republic, Estonia, Germany, Greece, Hungary, Lithuania, Luxembourg, Latvia, Slovenia and Slovakia) and 

turkeys in 10 (Belgium, Cyprus, Denmark, Finland, France, Ireland, the Netherlands, Spain, Sweden and the 

UK). In Italy and Poland, the highest acj was estimated for pigs, whereas in Portugal this happened for 

broilers. The highest values of qi were estimated for S. Kentucky, S. Newport, S. Virchow and S. 

Typhimurium. Values estimated for acj and qi are shown in Appendices C and D. 

 

DISCUSSION 

This study represents the first attempt to conduct source attribution of human salmonellosis in most 

European countries. Results suggest that layers were the most important source of salmonellosis in the EU in 

the study period, being responsible for over 40% of all Salmonella infections. At country level, it was 

estimated as the most important source in 13 out of 24 countries, followed by pigs, which was the most 

important source in eight countries.  Turkeys were revealed as particularly important only in Denmark and 

broilers in Portugal. The identification of the most important sources of salmonellosis is a step for 

prioritization of actions and interventions aimed at reducing the public health burden of disease.  

These attribution estimates took into account the amount of food produced and traded between countries as 

reported to the EUROSTAT database. The underlying assumption was that these data reflected the real flow 

of foodstuffs and consequent exposure in the countries. However, the dataset used was  built based on 

production, imports, exports and poultry trade datasets, and their quality and consistency depend on factors 

as the recording and reporting of the information by the countries. It is an important feature in this model that 

the relative contribution of food-animals produced in different countries is dependent not only on the 

Salmonella prevalence in a source in an exporting country, but also on the amount imported from that 

country. This is a point in which the EU model differs from the way single-country models work: in a single-

country model, mj works as a subset of aj, as they have the same dimensions (Hald, 2004; Pires and Hald, 

2010; Whälstrom, 2011); for each source, there is only one value of m and one value for the prevalence of a 

subtype in that source. The mj, therefore, has the role of weighting the contribution of the different sources, 
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which is, up to a point, already reflected in aj, In the multi-country model, m in a reporting country is 

composed by subsets of m from different countries or origin of the food sources, each one with its own 

prevalence. For that reason, even if an exporting country has a very high prevalence in a source, this 

prevalence will have little impact in an importing country if the amount imported is very small, particularly 

if another country with a low prevalence exports very large amounts which can, ultimately, “dilute” the high 

prevalence found in the first country. In short, the amount imported ultimately drives the m*p in the model 

formula, particularly when large differences in trade volume are observed, and so the quality of the trade data 

could have a large impact on the observed results. 

Travel-related cases had a localized importance in Northern Europe, notably in Scandinavian countries. 

Although data quality issues underline any interpretations of the travel data, these results are corroborated by 

other studies for at least two countries. A previous source attribution study in Sweden allocated 82% of 

Salmonella infections as travel-related [13], and results of the Danish source account for the same period 

[33] found a proportion of travel-related Salmonella cases varying between 22 and 46%, which, although 

higher than estimated by the EU model, accounted for the probability of a case with unknown travel 

information having been travelling abroad before onset of symptoms, and so add more “possible” travelers. 

Other countries, such as Spain, had zero cases attributed to international travel, as no travel information was 

reported. For this model, cases that were reported as acquired outside the country were considered as travel-

related cases, and all cases without specific information otherwise were assumed to be domestically 

acquired. That resulted in the data available being dependent on the patients being asked whether they had 

been travelling abroad before onset of symptoms, and the information being registered centrally. For that 

reason, travel-related disease is expected to be underestimated. Differences between patients traveling within 

or outside Europe were not assessed, as this information was only available for few MS. 

The use of underreporting factors has proved important when considering the effect of source and country 

contributions at EU level. This is particularly clear for broilers: this reservoir was the most important only in 

Portugal, but  the use of an underreporting factor multiplied its impact within the EU by 2082.9, increasing 

both the relative contribution of broilers and of Portugal to the total cases of salmonellosis, when compared 

to the original numbers. A similar effect can be observed for the contribution of Greece to the total cases 
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attributed to layers. It should therefore be noted that most of the cases “originated” by countries with large 

underreporting factors were reported in those same countries, so one should be careful when interpreting 

these results as countries “exporting” cases to the rest of the EU.  

As there was a large variation in the availability of data from the EFSA BS or EU- harmonized monitoring 

and surveillance of food sources between MSs, only broilers, laying hens, pigs and turkeys could be included 

in the model.  This can result in the misplacing of some cases when their “right” source is not included As an 

example, it is expected that some cases that should be attributed to beef could be attributed to pigs instead, as 

S. Typhimurium is a common serovar in both sources. It should be noted, though, that when the Danish 

model started being applied, it only included five sources, and it was still a powerful tool in guiding the 

decisions for the targeted actions regarding broilers, pigs and table eggs that dramatically decreased the 

prevalence of Salmonella in these sources in the last decade [34, 35]. Fruits and vegetables, which are also 

recognized as sources of salmonellosis, were not included. This happened because the approach employed 

attributes cases to the original animal reservoirs, meaning that infections caused by fruits and vegetables 

contaminated with faeces from production animals would be traced to the animal reservoir. 

The use of serovar as subtyping level, which resulted from the scarcity or absence of data on further 

subtyping levels (phage typing, antimicrobial resistance profiles), can also result in mis-attribution of cases. 

A good example is S. Enteritidis, which is present in all sources [17, 18, 19, 20]. Without more specific 

differentiation between subtypes found in each reservoir, cases are likely to be “cross-attributed” among 

sources. In countries where travel information was not provided, the mis-attribution of S. Enteritidis cases 

may include the attribution of cases which are actually travel-related to the animal reservoirs. In MSs with 

reasonably good travel data it can be seen that a large proportion of the S. Enteritidis infections are linked to 

travel, indicating that the same situation could be found in the MSs with poor or no travel data. In that 

scenario, travel-related cases would be wrongly attributed to one of the sources included in the model, as also 

observed by Hald et al. [28].  

Despite data limitations and the consequent uncertainty in the results, the source attribution estimates are 

considered valid as a first indication of which sources are most important for human salmonellosis in several 

countries. Limitations include the variability in the human surveillance systems in place in the countries, as 
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well as the different details with which serovar information is reported for both human and animal-food 

sources. Such uncertainties cannot be statistically quantified, but should be kept in mind when interpreting 

the results. The relative importance of different food-animal sources was found to vary between countries 

according to differences in prevalences, trade and consumption patterns and preferences, as well as animal 

and food production systems, also highlighting regional differences in the focus of surveillance systems in 

place in EU Member States.  The results are expected to be useful for the delineation of risk management 

strategies in the EU, and if the model is applied on a regular basis in upcoming years, it would be possible to 

analyse results over the years, for example, to evaluate the impact of implemented control, which would also 

be a way of validating the results.  
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Tables 

Table 1. Human cases of salmonellosis reported in the modeling dataset before and after adjusting for 

underreporting (UFs with 95% Credibility Intervals). 

Country Reported UF (95% CI)
(a)

 Adjusted   

AT 8,487 11 ( 1.6 , 33.6 ) 93,357 ( 13,579 , 285,163 )  

BE 11,066 3.5 ( 0.3 , 12.5 ) 38,731 ( 3,320 , 138,325 )  

BG 3,899 718.5 ( 112 , 2141 ) 2,801,432 ( 435,518 , 8,345,810 ) 

CY 471 173.2 ( 26.8 , 523.8 ) 81,577 ( 12,623 , 246,710 ) 

CZ 38,842 28.9 ( 4.3 , 86 ) 1,122,534 ( 167,021 , 3,340,412 ) 

DE 127,330 9.8 ( 1.5 , 29.3 ) 1,247,834 ( 190,995 , 3,730,769 ) 

DK 7,497 4.4 ( 0.7 , 13.1 ) 32,987 ( 5,248 , 98,211 ) 

EE 1,341 16.9 ( 2.4 , 51.8 ) 22,663 ( 3,218 , 69,464 ) 

ES 12,033 214.2 ( 32.7 , 638.9 ) 2,577,469 ( 393,479 , 7,687,884 ) 

FI 8,228 0.4 ( 0 , 1.2 ) 3,291 ( 0 , 9,874 ) 

FR 20,319 26.9 ( 4 , 82 ) 546,581 ( 81,276 , 1,666,158 ) 

GR 1,927 1228.5 ( 189 , 3668 ) 2,367,320 ( 363,240 , 7,068,621 ) 

HU 19,091 66.8 ( 10.2 , 199.1 ) 1,275,279 ( 194,728 , 3,801,018 ) 

IE 1,264 5.4 ( 0 , 27.2 ) 6,826 ( 0 , 34,381 ) 

IT 10,205 71.7 ( 10.7 , 214 ) 731,699 ( 109,194 , 2,183,870 ) 

LT 7,643 59.1 ( 8.7 , 182.1 ) 451,701 ( 66,494 , 1,391,790 ) 

LU 479 4.5 ( 0 , 21.4 ) 2,156 ( 0 , 10,251 ) 

LV 2,665 43.3 ( 6.6 , 134.9 ) 115,395 ( 17,589 , 359,509 ) 

MT 371 222.7 ( 33.7 , 663 ) 82,622 ( 12,503 , 245,973 ) 

NL 4,168 26.3 ( 3.6 , 84.8 ) 109,618 ( 15,005 , 353,446 ) 

PL 30,963 114.1 ( 17.2 , 338.2 ) 3,532,878 ( 532,564 , 10,471,687 ) 

PT 1,513 2082.9 ( 318 , 6267 ) 3,151,428 ( 481,588 , 9,481,820 ) 

RO 2,351 349.9 ( 48 , 1128 ) 822,615 ( 112,848 , 2,651,458 ) 

SE 11,265 40.3 ( 4.9 , 133.2 ) 453,980 ( 55,199 , 1,500,498 ) 

SE 3,002 0.5 ( 0.1 , 1.6 ) 1,501 ( 300 , 4,803 ) 

SK 19,399 53.2 ( 7.6 , 165.4 ) 1,032,027 ( 147,432 , 3,208,595 ) 

UK 36,666 7.3 ( 1.1 , 22.6 ) 267,662 ( 40,333 , 828,652 ) 

EU-27 392,485 57.5 ( 8.8 , 171.4 ) 22,567,888 ( 3,453,868 , 67,271,929 ) 
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Table 2. Parameters used to estimate the number of sporadic cases of salmonellosis attributable to the animal 

sources 

Notation Description Estimation 

i (1-22) Salmonella serovar - 

j (1-4) Food-animal source  

c (1-24) Country where the human case was reported   

k (1-24) Country of origin of the food product
(a)

  

oci Observed cases caused by serovar i in country c Data 

obci Observed cases caused by serovar i known to be outbreak related 

in country c. For each outbreak, one case was subtracted so that 

one outbreak contributed with one sporadic case. 

Data 

ytci Observed cases caused by serovar i in country c that was 

reported as travel-related 

Data 

pkji Prevalence of serovar i in source j in country k Data 

mckj Amount of source j available for consumption in country c 

produced in country k
(a)

 

Data 

acj Source-dependent factor for source j and country c dunif(0,max acj) 

qi Subtype-dependent factor for serovar i dunif(0,max qi) 

ufc Underreporting factor for country c dllnorm( , ) 

spdoci Total number of sporadic cases caused by serovar i in country c oci - ytci – (obci + 1) 

(a)If the food is produced and consumed in the same country, c=k 
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Table 3. Estimated proportion of human reported cases by food-animal source and the top-5 serovars within 

each source.  

Animal source associated to cases 

Broilers  Layers  Pigs  Turkeys 

Serovar %  Serovar %  Serovar %  Serovar % 

Enteritidis 85.0  Enteritidis 95.0  Typhimurium 50.9  Enteritidis 27.9 

Infantis 4.5  Typhimurium 1.4  Enteritidis 38.2  Typhimurium 18.6 

Typhimurium 2.5  Infantis 1.3  Derby 1.8  Newport 9.2 

Virchow 2.9  Virchow 1.0  Infantis 1.1  Saintpaul 4.5 

Kentucky 0.6  Kentucky 0.2  Newport 2.3  Hadar 19.0 

Others 4.5  Others 1.0  Others 5.7  Others 21.0 

Total cases 2,348,384  Total cases 7,899,435  Total cases 5,789,456  Total cases 702,335 
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Figures 

 

 

Figure 1. Diagram illustrating the construction of the final dataset for source attribution. For animal 

reservoirs and outbreaks, each gray block represents a dataset. For reported human cases, white blocks 

represent primary datasets originally provided to compose the gray blocks. 
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Figure 2. Proportion of Salmonella human cases attributed to food animal reservoirs, travel and outbreaks in 

24 EU Member States, 2007-2009 (mean %). 
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Appendix A. Country-specific attribution estimates to food-animal reservoirs, travel, outbreaks and unknown sources. 

 Source AT BE CY 

 

 % mean 95% CI  % mean 95% CI %  mean 95% CI 

Broilers 0.1 73 26 277 2.3 935 104 3,672 4.8 4,226 544 15,500 

Pigs 14.4 13,130 1,971 45,970 74.2 30,130 3,461 117,300 51.1 44,580 6,639 156,700 

Turkeys 3.7 3,417 503 12,090 9.2 3,750 423 14,680 6.4 5,626 618 21,480 

Layers 59.8 54,520 8,310 189,500 2.9 1,178 123 4,710 8.9 7,722 976 28,520 

Travel 12.2 11,110 1,674 38,690 0.0 0 0 0 3.8 3,334 504 11,650 

Unknown 9.4 8,605 1,267 30,210 11.2 4,554 512 17,810 24.9 21,750 3,128 77,430 

Outbreak 0.3 272     0.1 52     0.0 0     

    

 Source CZ DE DK 

 

%  mean 95% CI  % mean 95% CI %  mean 95% CI 

Broilers 0.1 1,308 92 5,201 0.5 6,378 519 24,980 3.5 918 132 3,295 

Pigs 10.9 128,900 19,490 446,700 33.1 420,300 63,750 1,462,000 18.0 4,743 854 16,170 

Turkeys 1.8 20,710 3,080 72,250 1.3 17,000 2,561 59,330 19.6 5,167 775 18,210 

Layers 84.6 997,000 151,300 3,450,000 52.0 660,800 100,100 2,301,000 10.1 2,665 617 8,710 

Travel 1.7 20,090 3,047 69,610 5.3 67,860 10,260 236,100 23.7 6,239 946 21,850 

Unknown 0.8 9,890 -1,204 41,970 7.6 96,850 14,570 337,000 18.3 4,813 725 16,860 

Outbreak 0.0 88     0.2 1,990     6.8 1,786     
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 Source EE ES 

 

FI 

 

 % mean 95% CI %  mean 95% CI  % mean 95% CI 

Broilers 4.6 923 160 3,356 0.1 3,384 45 17,680 0.7 21 0 96 

Pigs 27.5 5,488 818 19,130 33.1 869,600 130,000 3,066,000 4.7 150 22 530 

Turkeys 2.1 421 47 1,601 12.9 339,100 50,400 1,196,000 1.6 53 5 203 

Layers 55.0 10,980 1,671 37,940 43.1 1,133,000 169,200 4,003,000 2.4 79 10 291 

Travel 7.9 1,587 244 5,460 0.0 0 0 0 80.1 2,571 387 8,939 

Unknown 2.6 516 -601 2,764 10.7 281,100 41,470 993,700 4.6 148 21 530 

Outbreak 0.3 63     0.0 469     5.9 189     

 

 Source FR GR HU 

 

%  mean 95% CI %  mean 95% CI  % mean 95% CI 

Broilers 13.4 66,000 10,120 230,000 1.2 28,530 384 148,100 4.5 52,570 7,904 182,900 

Pigs 34.3 168,900 25,950 586,700 9.5 227,200 33,520 801,600 26.7 313,300 47,160 1,090,000 

Turkeys 12.6 62,180 9,363 217,400 0.4 9,061 468 40,570 5.4 63,760 9,558 222,200 

Layers 2.9 14,150 2,864 47,600 78.3 1,872,000 279,200 6,552,000 54.9 643,600 96,960 2,231,000 

Travel 0.0 0 0 0 2.3 55,820 8,336 195,400 0.2 1,975 298 6,840 

Unknown 36.5 179,800 27,140 627,000 8.3 197,700 25,090 721,300 8.1 94,870 14,110 331,500 

Outbreak 0.2 966     0.0 0     0.2 1,815     
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 Source IE IT LT 

 

 % mean 95% CI  % mean 95% CI  % mean 95% CI 

Broilers 1.5 100 6 486 2.3 17,680 2,639 62,030 1.2 5,244 631 19,630 

Pigs 27.2 1,810 113 8,616 73.2 560,700 85,200 1,949,000 9.5 42,750 6,428 148,700 

Turkeys 8.8 589 35 2,810 5.3 40,410 6,028 141,700 0.7 3,318 369 12,600 

Layers 14.6 971 64 4,594 2.2 16,520 2,309 59,450 86.9 390,000 59,010 1,353,000 

Travel 31.7 2,110 133 10,020 1.3 9,908 1,505 34,480 0.3 1,294 196 4,488 

Unknown 15.3 1,018 62 4,864 15.8 120,800 18,280 421,300 1.2 5,596 -4,449 27,910 

Outbreak 0.9 63     0.0 0     0.1 335     

    

 Source LU LV NL 

 

 % mean 95% CI  % mean 95% CI  % mean 95% CI 

Broilers 4.4 96 6 449 0.9 873 92 4,135 4.6 4,455 653 15,810 

Pigs 8.5 184 13 833 13.7 13,590 2,052 47,280 27.3 26,330 3,978 91,590 

Turkeys 6.9 149 11 670 0.3 291 6 1,368 9.7 9,404 1,393 33,050 

Layers 49.8 1,073 89 4,662 82.5 81,600 12,450 282,200 26.2 25,270 4,015 87,770 

Travel 9.6 207 17 896 1.5 1,459 222 5,046 14.2 13,730 2,079 47,900 

Unknown 20.7 446 35 1,961 0.7 714 -4,236 7,337 17.5 16,920 2,521 59,240 

Outbreak 0.0 0     0.4 351     0.5 470     
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 Source PL PT SE 

 

%  mean 95% CI %  mean 95% CI  % mean 95% CI 

Broilers 25.1 796,600 120,900 2,772,000 42.3 1,357,000 202,700 4,727,000 0.5 28 2 117 

Pigs 47.8 1,520,000 229,700 5,269,000 36.3 1,164,000 175,500 4,052,000 4.8 282 42 991 

Turkeys 1.2 39,640 5,790 139,900 0.6 18,580 546 83,890 1.7 99 13 361 

Layers 23.0 731,300 111,500 2,550,000 9.1 290,400 29,270 1,138,000 2.5 145 29 506 

Travel 0.1 1,978 300 6,882 0.4 11,250 1,704 39,030 75.9 4,441 666 15,530 

Unknown 2.7 84,840 11,520 305,300 11.4 364,300 49,970 1,310,000 10.2 596 89 2,089 

Outbreak 0.1 3,484     0.0 90     4.4 260     

    

 Source SI SK UK 

 

%  mean 95% CI %  mean 95% CI  % mean 95% CI 

Broilers 0.5 564 7 3,037 0.0 363 21 1,779 0.6 1,590 236 5,565 

Pigs 20.6 21,600 2,464 84,410 18.0 189,300 28,490 664,900 11.7 32,370 4,886 112,600 

Turkeys 4.0 4,197 452 16,740 2.6 27,580 4,066 97,930 10.1 27,930 4,208 97,290 

Layers 59.5 62,240 7,195 242,500 76.8 807,500 121,800 2,826,000 35.5 97,990 14,800 340,900 

Travel 0.0 0 0 0 0.8 8,152 1,228 28,540 24.3 67,250 10,170 234,100 

Unknown 14.7 15,370 1,716 60,450 1.7 17,940 1,124 70,500 17.8 49,270 7,449 171,200 

Outbreak 0.6 656     0.0 449     0.0 0     
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Appendix B. Attribution estimates to food-animal reservoirs in their country of origin. The percentage column refers to percentage of EU cases “originated” by that 

country. 

 

  AT BE CY 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.3 191 67 466 0.8 16,540 5,603 44,550 0.3 4,155 552 15,190 

Pigs 

 

23,560 10,910 47,650 

 

109,000 53,050 220,300 

 

40,090 10,190 122,900 

Turkeys 

 

2,437 947 5,810 

 

851 258 2,516 

 

456 50 1,741 

Layers 

 

31,970 6,051 107,300 

 

14,340 3,923 43,140 

 

3,045 386 11,220 

  

 

      

 

      

 

      

  CZ DE DK 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 6.0 956 247 3,045 6.7 7,650 2,587 20,900 0.5 0 0 0 

Pigs 

 

114,700 29,510 323,100 

 

645,100 265,700 1,551,000 

 

85,460 37,260 189,400 

Turkeys 

 

15,020 4,451 40,000 

 

22,310 10,170 50,260 

 

0 0 0 

Layers 

 

874,200 142,000 2,999,000 

 

440,100 124,900 1,258,000 

 

584 226 1,390 

  

 

      

 

      

 

      

  EE ES FI 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.1 0 0 0 18.4 58,490 13,020 185,800 0.0 0 0 0 

Pigs 

 

9,121 3,271 21,790 

 

1,306,000 423,700 3,556,000 

 

0 0 0 

Turkeys 

 

0 0 0 

 

302,600 55,350 1,029,000 

 

0 0 0 

Layers 

 

5,419 1,339 16,020 

 

1,414,000 406,100 4,286,000 

 

10 4 22 
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  FR GR HU 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 2.5 35,210 6,162 120,300 10.9 27,380 499 141,600 6.0 53,660 9,881 180,800 

Pigs 

 

238,400 91,980 576,800 

 

90,550 13,560 319,100 

 

286,600 59,800 943,700 

Turkeys 

 

116,700 43,460 287,300 

 

445 54 1,754 

 

84,060 27,580 230,500 

Layers 

 

20,610 7,262 52,790 

 

1,701,000 256,400 5,944,000 

 

587,900 93,970 2,023,000 

  

 

      

 

      

 

      

  IE IT LT 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.1 3,927 1,474 9,996 2.4 17,440 3,194 59,030 0.0 1,192 216 4,185 

Pigs 

 

8,004 4,158 15,200 

 

299,900 51,940 1,024,000 

 

4,684 791 16,020 

Turkeys 

 

638 185 1,809 

 

56,860 19,810 153,800 

 

399 108 1,207 

Layers 

 

7 1 21 

 

32,510 10,850 82,980 

 

0 0 0 

  

 

      

 

      

 

      

  LU LV NL 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.0 0 0 0 1.2 876 157 3,126 1.8 1,944 890 4,067 

Pigs 

 

340 146 785 

 

3,016 544 10,190 

 

121,000 56,900 251,200 

Turkeys 

 

0 0 0 

 

0 0 0 

 

5,088 2,711 9,397 

Layers 

 

414 39 1,776 

 

196,500 69,420 486,500 

 

165,200 39,940 512,100 
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  PL PT SE 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 21.3 803,600 131,400 2,768,000 14.5 1,305,000 198,500 4,535,000 0.0 7 2 20 

Pigs 

 

1,402,000 257,400 4,721,000 

 

876,000 134,800 3,040,000 

 

364 189 695 

Turkeys 

 

71,110 30,950 167,900 

 

1,342 198 5,397 

 

0 0 0 

Layers 

 

1,287,000 492,000 3,162,000 

 

239,800 27,870 928,000 

 

64 13 215 

  

 

      

 

      

 

      

  SI SK UK 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.4 412 33 2,060 5.0 1,711 628 3,999 0.8 8,632 3,920 18,300 

Pigs 

 

11,440 1,577 43,820 

 

72,300 12,190 249,600 

 

50,810 20,800 117,600 

Turkeys 

 

2,864 381 11,170 

 

71 18 220 

 

19,080 6,737 52,040 

Layers 

 

57,020 6,929 221,100 

 

768,300 192,800 2,339,000 

 

60,270 10,210 206,300 
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Appendix D. Estimated values for acj, source-dependent factor (mean and 95% Credibility Interval). 

Country Broilers 95% CI Pigs 95% CI Turkeys 95% CI Layers 95% CI 

AT 5.38E-07 [ 2.00E-08 , 2.85E-06 ] 4.93E-05 [ 4.30E-05 , 5.58E-05 ] 1.39E-04 [ 1.07E-04 , 1.76E-04 ] 7.42E-04 [ 7.14E-04 , 7.70E-04 ] 

BE 2.69E-05 [ 2.10E-05 , 3.36E-05 ] 2.00E-04 [ 1.89E-04 , 2.11E-04 ] 5.27E-04 [ 4.54E-04 , 6.06E-04 ] 1.73E-05 [ 1.02E-05 , 2.48E-05 ] 

CY 1.66E-06 [ 8.27E-07 , 2.74E-06 ] 3.51E-05 [ 2.93E-05 , 4.12E-05 ] 1.39E-03 [ 4.90E-04 , 2.59E-03 ] 1.03E-04 [ 4.97E-05 , 1.73E-04 ] 

CZ 1.81E-06 [ 3.07E-07 , 3.86E-06 ] 1.41E-04 [ 1.30E-04 , 1.52E-04 ] 6.25E-04 [ 4.98E-04 , 7.67E-04 ] 8.63E-04 [ 8.52E-04 , 8.74E-04 ] 

DE 1.11E-05 [ 2.36E-06 , 2.13E-05 ] 1.13E-04 [ 1.07E-04 , 1.19E-04 ] 1.05E-04 [ 8.92E-05 , 1.22E-04 ] 6.08E-04 [ 6.02E-04 , 6.15E-04 ] 

DK 9.31E-05 [ 5.06E-05 , 1.42E-04 ] 2.19E-05 [ 1.91E-05 , 2.48E-05 ] 2.39E-03 [ 2.01E-03 , 2.79E-03 ] 1.08E-04 [ 8.54E-05 , 1.31E-04 ] 

EE 7.53E-05 [ 1.54E-05 , 1.55E-04 ] 9.84E-05 [ 7.51E-05 , 1.24E-04 ] 3.43E-04 [ 1.27E-04 , 6.85E-04 ] 4.48E-04 [ 3.92E-04 , 5.04E-04 ] 

ES 4.12E-08 [ 1.54E-09 , 2.18E-07 ] 1.07E-05 [ 9.91E-06 , 1.15E-05 ] 1.54E-04 [ 1.33E-04 , 1.76E-04 ] 1.01E-05 [ 9.78E-06 , 1.04E-05 ] 

FI 6.27E-04 [ 3.15E-05 , 1.98E-03 ] 4.70E-04 [ 3.35E-04 , 5.98E-04 ] 2.71E-03 [ 7.36E-04 , 4.99E-03 ] 8.39E-06 [ 3.53E-06 , 1.34E-05 ] 

FR 5.10E-05 [ 4.73E-05 , 5.50E-05 ] 3.86E-05 [ 3.61E-05 , 4.10E-05 ] 1.47E-04 [ 1.33E-04 , 1.62E-04 ] 5.99E-06 [ 4.65E-06 , 7.50E-06 ] 

GR 6.83E-07 [ 2.51E-08 , 3.53E-06 ] 8.43E-06 [ 6.90E-06 , 1.01E-05 ] 1.07E-05 [ 1.51E-06 , 3.47E-05 ] 2.61E-05 [ 2.45E-05 , 2.75E-05 ] 

HU 4.93E-06 [ 4.23E-06 , 5.67E-06 ] 1.06E-04 [ 9.72E-05 , 1.16E-04 ] 2.00E-04 [ 1.75E-04 , 2.28E-04 ] 2.39E-04 [ 2.30E-04 , 2.47E-04 ] 

IE 3.39E-07 [ 1.83E-07 , 5.52E-07 ] 2.24E-05 [ 1.88E-05 , 2.61E-05 ] 2.34E-04 [ 1.56E-04 , 3.26E-04 ] 3.95E-05 [ 3.04E-05 , 4.91E-05 ] 

IT 6.56E-06 [ 5.22E-06 , 8.06E-06 ] 5.81E-05 [ 5.51E-05 , 6.11E-05 ] 4.52E-05 [ 3.52E-05 , 5.72E-05 ] 1.34E-06 [ 8.14E-07 , 2.00E-06 ] 

LT 2.08E-05 [ 7.6E-06 , 3.5E-05 ] 1.2E-04 [ 1.0E-04 , 1.4E-04 ] 1.3E-04 [ 4.6E-05 , 2.5E-04 ] 3.8E-02 [ 3.7E-02 , 3.9E-02 ] 

LU 3.11E-05 [ 5.6E-06 , 5.2E-05 ] 2.8E-05 [ 1.2E-05 , 5.0E-05 ] 4.0E-04 [ 1.9E-04 , 6.9E-04 ] 6.8E-04 [ 5.5E-04 , 8.1E-04 ] 

LV 2.85E-06 [ 9.1E-08 , 1.2E-05 ] 7.5E-05 [ 6.0E-05 , 9.2E-05 ] 7.5E-05 [ 3.2E-06 , 3.0E-04 ] 9.4E-05 [ 8.8E-05 , 1.0E-04 ] 

NL 5.37E-06 [ 3.7E-06 , 6.7E-06 ] 2.0E-05 [ 1.8E-05 , 2.2E-05 ] 1.5E-04 [ 1.1E-04 , 1.8E-04 ] 2.9E-05 [ 2.6E-05 , 3.1E-05 ] 

PL 2.01E-05 [ 1.7E-05 , 2.0E-05 ] 5.8E-05 [ 5.4E-05 , 6.3E-05 ] 2.1E-05 [ 1.5E-05 , 2.9E-05 ] 3.9E-05 [ 3.4E-05 , 4.5E-05 ] 

PT 8.37E-06 [ 6.8E+03 , 9.8E-06 ] 8.2E-06 [ 7.3E-06 , 9.1E-06 ] 5.4E-06 [ 2.9E-07 , 1.8E-05 ] 2.3E-06 [ 7.4E-07 , 4.9E-06 ] 

SE 1.46E-04 [ 2.4E-05 , 2.4E-04 ] 7.7E-05 [ 6.3E-05 , 9.1E-05 ] 5.0E-03 [ 3.1E-03 , 7.1E-03 ] 3.8E-04 [ 2.3E-04 , 5.4E-04 ] 

SI 6.52E-06 [ 2.2E-07 , 2.9E-05 ] 1.3E-04 [ 1.1E-04 , 1.5E-04 ] 8.8E-05 [ 5.5E-05 , 1.3E-04 ] 2.3E-04 [ 2.1E-04 , 2.4E-04 ] 

SK 1.50E-07 [ 5.5E-09 , 6.6E-07 ] 3.8E-04 [ 3.5E-04 , 4.1E-04 ] 6.4E-04 [ 5.0E-04 , 8.0E-04 ] 1.1E-03 [ 1.0E-03 , 1.1E-03 ] 

UK 1.71E-06 [ 1.1E-06 , 2.0E-06 ] 4.4E-05 [ 4.0E-05 , 4.8E-05 ] 1.2E-03 [ 1.1E-03 , 1.4E-03 ] 4.8E-04 [ 4.7E-04 , 4.9E-04 ] 
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Appendix E. Estimated values for qi, Salmonella subtype-dependent factor (mean and 95% Credibility 

Interval). 

 

Serovar qi 95% CI 

S. Enteritidis 1
(a)

    

S. Agona 0.0527 [0.0488 , 0.0569] 

S. Anatum 0.0252 [0.0223 , 0.0283] 

S. Bovismorbificans 0.1854 [0.1690 , 0.2034] 

S. Brænderup 0.1386 [0.1223 , 0.1567] 

S. Brandenburg 0.1096 [0.1009 , 0.1190] 

S. Bredeney 0.0170 [0.0151 , 0.0191] 

S. Derby 0.0197 [0.0186 , 0.0201] 

S. Hadar 0.0734 [0.0670 , 0.0806] 

S. Heidelberg 0.1163 [0.0960 , 0.1401] 

S. Infantis 0.1223 [0.1167 , 0.1281] 

S. Kentucky 1.9980 [1.7970 , 2.2130] 

S. Kottbus 0.0143 [0.0124 , 0.0164] 

S. Livingstone 0.0595 [0.0540 , 0.0653] 

S. London 0.0826 [0.0751 , 0.0908] 

S. Mbandaka 0.0473 [0.0425 , 0.0523] 

S. Montevideo 0.1124 [0.1044 , 0.1210] 

S. Newport 0.2476 [0.2320 , 0.2645] 

S. Rissen 0.0302 [0.0268 , 0.0340] 

S. Saintpaul 0.0600 [0.0538 , 0.0671] 

S. Typhimurium 0.2153 [0.2054 , 0.2264] 

S. Virchow 0.2469 [0.2320 , 0.2625] 

(a) The q value for S. Enteritidis is fixed to 1, and the other serovars are calculated relatively to it. 
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Abstract 

Danish risk management strategies for Salmonella control in the food chain rely on the routine application of 

a source attribution model to estimate the contribution of the major animal-food sources to human infections. 

This model was the basis for the development of a European Union model, which needed to be validated. As 

part of this process, results obtained for Denmark by the EU model were compared with the ones obtained 

using the Danish model in the same period. The latter estimated pigs as the main animal source of human 

salmonellosis in the period between 2007 and 2009, followed by table eggs (layers) and broilers, while in the 

EU model the estimated order of importance in the same period was turkeys, pigs, layers and broilers.  

Differences in travel-related cases and cases that could not be attributed to any source were also observed. 

Discrepancies in numbers are mostly explained by differences in the management of missing data, the level 

of subtyping available in the two datasets, the number of sources included in each model, the inclusion of 

multiple countries, and the use of trade data to estimate cases caused by imported food. Still, the two models 

ranked three out of the four sources in a similar order. We concluded that the EU model is useful for 

countries which cannot readily attain the level of data detailing achieved by Danish monitoring and 

surveillance, and that the Danish model would benefit more from adapting the EU model’s approach to use 

food trade data.  

Key words: source attribution; source account; Salmonella  
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INTRODUCTION 

During the last decades, Salmonella has been one of the major causes of foodborne infections in Denmark. 

Different food animals have been identified as the main reservoir in different moments, such as broilers in 

the late eighties, pigs in the early nineties and laying hens in the late nineties and 2000’s (Wegener 2010). 

For that reason, Denmark has developed a series of initiatives to control and reduce the spread of Salmonella 

in the food chain, which rely on a well-established system for Salmonella surveillance in humans, foods and 

animals. 

As part of the risk-management activities, the National Food Institute routinely applies a source attribution 

model to estimate the contribution of the major animal-food sources to human infections of Salmonella. The 

model was first implemented in 1995 and has been evolving ever since, becoming a stochastic model in 2004 

(Hald et al., 2004), and developing the possibility of using data from multiple years in 2008, (Pires and Hald, 

2010), thereby obtaining more robust and accurate results.. 

The principle of source attribution by microbial subtyping is to compare the occurrence of subtypes in 

animals or food sources with the same subtypes in humans. The approach is enabled by the identification of 

strong associations between some of the dominant subtypes and a specific reservoir or source, as long as a 

heterogeneous distribution of subtypes among the sources exists. Infections by subtypes exclusively or 

almost exclusively isolated from one source are regarded as originating from that source. Human infections 

caused by subtypes found in several reservoirs are then distributed relatively to the prevalence of the 

indicator types. This approach utilizes a collection of temporally- and spatially-related isolates from various 

sources, and thus is facilitated by an integrated foodborne disease surveillance programme that is focused on 

the collection of isolates from the major food animal reservoirs of foodborne diseases (Hald et al. 2004).  

A EU model was created in 2010 as an answer to EFSA’s need of an overview of the main Salmonella 

animal sources in the European Union (Pires et al. 2011). It is based on the Danish model, but instead of 

using data from multiple years from one single country, it uses data from several countries in a cross-

sectional timeframe (de Knegt, 2013). 
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The objective of this study was to validate the utility of the newly developed EU model, and conclude on 

advantages and limitations of both models. This was done by comparing the results of the Danish Salmonella 

source account as published in the Annual Report on Zoonoses in Denmark each year with the source 

attribution results obtained for Denmark in the EU source attribution study conducted in 2011.  

MATERIALS AND METHODS 

Both the current Danish model and the EU model are based on the original Hald model (Hald et al. 2004), 

which includes two dimensions: the Salmonella subtype and the food/animal source. It attributes Salmonella 

sporadic cases to the sources, to international travel and to an unknown source each year. A sporadic case is 

defined as a subject that could not be associated with a recognized foodborne disease outbreak. Outbreak-

related cases except one per subtype are subtracted from the total number of observed cases. The remaining 

outbreak-cases are added to the final results of the model and attributed either to the source implicated in the 

outbreak or to outbreaks with unknown source. A domestic case is defined as a subject who had not been 

traveling before the disease onset. It is assumed that all cases that had been travelling abroad one week prior 

to onset of symptoms were travel-related. Not all cases have travel information, and human cases with 

unknown travel information are attributed to travel based the proportion of on the distribution of travelers 

and non-travelers for each subtype. Cases that are attributed to an unknown source may include cases caused 

by sources not included in the model or cases caused by isolates that were not subtyped.  

The Hald model takes into account the number of cases caused by a serovar, the prevalence of each serovar 

in each food source and the relative impact of a set of unknown factors. Those factors were included as 

multi-parameter priors, and account for the differences in the ability of different subtypes to cause disease 

and of different sources to act as vehicles for infection. An overview of the model parameterization can be 

drawn as: 
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aj ~ Uniform (0,10) 

qi ~ Uniform (0,0.01) 

λi ~ Poisson (oi),  

λji = pij * mj * aj * qi  

where: 1) λji is the expected number of cases per serovar i in source j; 2) pij is the prevalence of serovar i in 

source j; 3) mj is the amount of source j available for consumption in the country; 4) aj is the source-

dependent factor for source j; 5) qi is the subtype-dependent factor for serovar i; The source-dependent factor 

aj accounts for variability in surveillance of different food sources, also including general variations between 

sources, e.g. bacterial load/concentration in the food and processing, handling or preparation practices. The 

subtype-dependent factor qi is a one-dimensional parameter, meaning that it is a property of the Salmonella 

serovar and assumed independent of the source where it is found. The qi prior for S. Enteritidis is defined as 

1, and all other qi values are estimated relatively to this one. The number of human sporadic and domestic 

cases attributed to each subtype (λi) is estimated assuming a Poisson distribution of the observed number of 

sporadic cases per subtype (oi) (Hald et al., 2004). 

The current Danish model has three dimensions: Salmonella subtype, food/animal source and year (Pires and 

Hald, 2010).The EU model, albeit also three-dimensional, uses the Salmonella subtype, the food/animal 

source and the country of reporting (de Knegt 2013).  Although both models follow the same mathematical 

approach used in the Hald model, the difference in dimensions require the use of different types of data, 

mostly because data availability varies between countries. As an example, the EU model includes data from 

24 countries, and available data had only serotyping information and varied in representativeness and 

quality. On the contrary, the Danish model makes use of data with higher discriminatory power, i.e. with a 

better resolution of subtyping. Additionally, considering national differences in surveillance systems and the 

levels of underreporting which are expected to happen in different countries (de Jong and Ekdahl 2006; 

Havelaar et al. 2012), the EU model makes use of underreporting factors, which are multiplied with the 
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estimated cases after attribution. For Denmark, this means that the “true” number of cases of salmonellosis in 

the country is expected to be 4.4 times the total officially reported (Havelaar et al. 2012).   

Regarding the prevalence (p), the EU model uses data from the EFSA Baseline Studies (BS) on the 

prevalence of Salmonella in broiler carcasses (EFSA 2010a), slaughter pigs (EFSA 2008a) and turkeys 

(EFSA 2008b), as well as EU-harmonized surveillance data for laying hens (EFSA 2010b), whereas the 

Danish model uses data from national monitoring programs and from the Case-by-case Risk Assessment 

Program (CBC). The national Salmonella surveillance programmes collect faecal samples at farm level from 

layers and broiler flocks, and samples from pigs and cattle carcass swabs at slaughter; the latter are assumed 

to represent the reservoir (farm) level (Anon., 2011). The CBC started in 2007 and collects samples from 

batches of Danish and imported pork, beef, chicken, turkey and duck, which are then tested for Salmonella. 

Apart from the CBC, individual retail samples are also collected from domestic and imported ducks and 

turkeys. All isolates collected as part of the surveillance programmes are submitted to the National Food 

Institute (Food-DTU) for serotyping, and all S. Typhimurium and S. Enteritidis are phage typed. Isolates of 

animal and food origin are tested for antimicrobial susceptibility (Agersø et al. 2011).  Results of the CBC 

Salmonella testing are recorded by country of origin, but the prevalence in imported sources used in the 

model is the overall percentage of positive samples by type of imported meat, regardless of the origin.  

In the EU model, the amount of each food source available for consumption (m) was estimated as the amount 

produced in the country minus what is exported, plus what was imported from each other country (data from 

the European Statistical Office - EUROSTAT). For the same variable, the Danish model uses the total 

produced minus exported for domestic sources, and the total imported amount for imported foods, without 

specifying the origin. This means that the EU model ultimately works in four dimensions, since the country 

of origin of the food and to which the Salmonella prevalences apply can differ from the country where the 

human cases were reported. Cases are, consequently, attributed to the countries from where the food 

originated. This combination of data types used for p and m also means that, while the Danish model uses m 

only for weighting the relative importance of sources, in the EU model the prevalence in a country exporting 
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a large amount of a food source to Denmark will have a higher impact on the results, when compared to 

countries exporting smaller amounts. Table 1 presents a summary comparison of the two models. 

RESULTS 

A total of 7,433 human cases of Salmonella were reported in Denmark in the period from 2007 to 2009. 

Table 2 shows the number of reported cases attributed to animal reservoirs, international travel and outbreaks 

in each year in the Danish model, as well as the sum of the three years. The most important sources of 

salmonellosis in this period were pork (7.9% domestic and 1.4% imported), table eggs (7.5%) and broilers 

(4.7%), of which imported chicken (3.8%) is the largest part. Around 30% of cases were estimated to have 

been acquired abroad, and 16.7% could not be attributed to any source. 

In the EU model, 7,461 cases were reported in Denmark in the same period
1
. After adjusting for 

underreporting, this resulted in 26,331 cases (Table 3), with turkeys as the most important food source 

(19.6%), followed by  pigs (18.0%), layers (10.1%) and broilers (3.5%). The largest proportion of cases was 

attributed to international travel (23.7%). Cases that could not be attributed to any source corresponded to 

18.3%, and outbreaks with unknown source had 6.8% of cases.   

Figure 1 shows the proportion of cases attributable to domestic and imported sources in the two models. The 

category “others” includes sources present in the Danish model but not in the EU model (e.g. beef and 

ducks).   

DISCUSSION 

 The comparison between Danish source attribution estimates obtained by the EU Salmonella source 

attribution model and by the Danish single-country model was performed to assess the impact of differences 

between the two models and conclude on advantages and limitations of each. Differences derive mostly from 

the type of data used, and reflect the different levels of subtyping, as well as the inclusion of different 

sources and multiple countries data. The largest discrepancy was observed in the results for turkeys. For 

                                                           
1
 Data sets extracted at different times result in differences in the number of reported cases. 
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other sources, although individual attributed fractions are different, the order of priority is similar, having 

pigs as the most important, layers and then broilers (Table 3). 

Differences in the data used in the two models explain the discrepancy in the proportion of cases attributed to 

the turkey reservoir. Both models agreed that all cases attributed to turkeys were related to imported turkey, 

but the proportion of cases attributed in the EU model was over 10 times the proportion in the Danish model. 

Table 4 shows that the total amount of turkey meat imported by Denmark as considered in the Danish model 

was smaller than in the EU model, resulting in a smaller parcel of cases weighted to this reservoir. The data 

used in the Danish model also shows that the CBC tested samples from the four countries responsible for 

88% of cases in the EU model (Germany, France, Italy and Poland), which were also the main exporting 

countries in the period, according to EUROSTAT. Table 5 shows the prevalence of S. Saintpaul, one of the 

most important turkey serovars, and of S. Enteritidis and S. Typhimurium, the two most important overall, in 

Poland, Germany and France (80% of cases). The adjusted number of human cases of each of those serovars 

in Denmark was 352, 7,044 and 6,310. The prevalence of S. Saintpaul in Polish turkeys is 4.3 times the 

observed in Germany, and over 10 times the French prevalence, while it is almost absent in the other three 

sources in the three countries. More importantly, Poland is the only country in which the prevalence of S. 

Typhimurium is higher in turkeys than other sources, suggesting that, if more detailed subtyping methods 

were available, part of the cases attributed to turkeys might have been attributed to other sources (for 

instance, pigs). Given the large number of S.Typhimurium cases (6,310), this results in a large difference, 

suggesting that the EU model could have overestimated the importance of this source based on Poland, 

pointed as the main contributor of turkey-originated cases (31%).  

Concerning broilers, the absence of cases attributed to domestic broilers in the EU model while the Danish 

model attributed 3.8% of cases to this source is readily explained by the different data used; in the BS, the 

prevalence of Salmonella in broiler carcasses in Denmark was zero, while the surveillance and monitoring 

data used in the Danish model had 2.1% positive samples.  The parcel attributed to imported broilers in the 

Danish model is also larger than in the EU model, which is likely explained by the lower level of subtyping 

detail in the EU model. S. Enteritidis is very frequently observed in both broilers and layers, and without 
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better discriminatory features a parcel of S. Enteritidis cases can be misattributed between them. As 27% of 

sporadic human cases in Denmark (7,044 out of 26,330) were caused by S. Enteritidis, this parcel 

corresponds to a large proportion of total cases. In addition, the Danish model includes data from meat 

imported from non-EU countries, such as Brazil, Chile and Argentina. The EU model does not take those 

countries into consideration, which could result in non-EU broiler cases being “forced” into the available 

countries in this model (Table 6).  

The two models tend to agree on the importance  pigs for salmonellosis, as 81.5% of cases attributed to this 

reservoir in the EU model (Table 7) and 84.9% in the Danish model were estimated to be domestic (Table 3). 

As the overall prevalences in the two largest foreign contributors (Germany and Spain) are similar in the two 

models (Table 7), this suggests that the main difference in attributable fractions is again likely due to the 

difference in discriminatory power. S. Typhimurium, the most important pig serovar, is one of the main 

serovars in all other sources, and also the serovar with the second largest amount of human cases (de Knegt 

2013). Without better discriminatory power, a large parcel of S. Typhimurium cases is attributed to pigs in 

the EU model, corresponding to a large parcel of total cases. In the Danish model, phage typing data allows 

better differentiation among sources, resulting in less “cross-attribution”.   

The different approaches to estimate the contribution of imported foods had an important impact in the 

results. The EU model used a complex matrix of trade information; as a consequence, when compared to the 

EU model, the data in the Danish model lead to an underestimation of the contribution of imported meats to 

human salmonellosis in Denmark. This happens because the CBC does not sample foods from all exporting 

countries. However, data from the main contributing countries in all categories are available, as well as data 

from products imported from non-EU countries , suggesting that the CBC data has a good level of sensitivity 

and representativeness for the purposes of the DK model.  

The Danish model estimates the proportion of cases with no travel information that are travel-related, 

assuming that these should follow the same proportions as the ones for which that information is available; 

as a consequence, the total cases attributed to travel includes reported and estimated cases. Because no travel 
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information was available for some countries, cases with no travel information were considered domestic in 

the EU model, whereas a part of these were attributed to travel in the Danish model. In the EU model dataset, 

S. Enteritidis corresponds to 46% of travel cases in Denmark, where specific phage types of this serovar, like  

PT 21, PT 4 and PT 6, are most frequently related to travel (Anonymous, 2011). This information cannot be 

taken into consideration in the EU model, as phage type data were not available. Due to control activities 

conducted in the country during the last decade, the prevalence of S. Enteritidis in food-animals is in general 

low, particularly when compared to other MS. The EU model, therefore, tends to allocate those cases to 

countries from which Denmark imports eggs with high S. Enteritidis prevalence (since in most MSs eggs are 

the most common source of S. Enteritidis), resulting in another discrepancy: in the EU model, 88% of cases 

attributed to layers come from imported eggs (Table 8), while the Danish model does not consider this as a 

valid source. This happens because the Salmonella contribution from imported eggs is not considered 

important in Denmark, as it is believed that most of the imported eggs are not sold as shell eggs, but instead 

used in heat-treated products. Whether this assumption holds is not known, but the EU model could be 

improved if this type of country-specific information was used to adjust the results accordingly; in the above 

example, this would imply in disregarding the cases attributed to imported eggs.  

The amount of cases attributed to the “unknown” category is directly affected by the different number of 

sources in the two models. The attribution of human cases to a limited number of food-animal sources may 

result in the misplacing of some cases if their “true” source is not included in the model. As an example, it is 

likely that some beef-related cases in the EU model were “wrongly” attributed to pigs, as S. Typhimurium is 

one of the main serovars in both sources (de Knegt, 2003). The higher level of subtyping detail in the DK 

model (phage types, AMR profile) also affects this category, since a more discriminatory level of subtyping 

increases the probability of the model only attributing cases if the right source is included in the model,s, 

resulting in a larger number of cases being attributed to “unknown”. This is also one of the reasons for the 

animal sources in the EU model receiving in general a larger proportion of cases when compared to the 

Danish model. 



10 

 

The proportion of cases attributed to outbreaks differed substantially in the two models because the 

attribution estimates for all sources except outbreaks in the EU model were adjusted for underreporting. It is 

a model assumption that all outbreak-related cases were properly reported, and so these were not multiplied 

by the UF. This changed the balance between the proportion of cases attributed to outbreaks and to the other 

categories, when comparing the two models. If the results of the Danish model are multiplied by 4.4 and the 

proportions are re-calculated, cases belonging to outbreaks with an unknown source change from 26.4% to 

7.6%, which is more similar to the 6.8% estimated by the EU model. 

Despite the discussed data limitations and differences, results of the EU model seem to point in the same 

direction as the Danish model for prioritizing interventions at the national farm-to-fork chain, showing 

almost the same order of importance for the sources common to both. The main difference was observed for 

turkeys, and it was not possible to evaluate which of the models present a more realistic estimation. 

CONCLUSIONS 

It was considered that results of the single-country model could be improved by the use of country-specific 

trade data for the m component, taking into consideration a weighted contribution of exporting countries to 

the number of cases attributed to the sources. The EU model would be improved by using more complete and 

representative data with a higher level of subtyping, but is still considered useful for countries which cannot 

readily attain the level of detailing found in Denmark for monitoring and surveillance data. 
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Tables 

Table 1. Data-related features of the Danish source account model and the EU source attribution model. 

 Danish model EU model Comment 

Human data included Data from 2007, 2008 and 2009 Aggregated and case-based data from 2007 to 

2009 

No year-specific inferences are possible in the EU-model. 

Source of human data Statens Serum Institute (SSI). ECDC / EFSA after reporting from countries. Locally produced and reported data have fewer opportunities for information 

loss from the point of collection to the point of storage. Danish data in the 

EU model was reported to ECDC by SSI. 

Travel information Cases with missing information modeled 

according to the probabilities observed in 

the ones with information, resulting in 

31% travel and 69% domestic. 

Cases with missing information assumed to be 

domestic, resulting in 18% travel and 82% 

domestic. 

The Danish model assumes that the follows the same distribution as the 

information provided. The EU model assumes that cases not referred 

specifically as travel-related are domestic, mainly because some countries 

had 0% travel information, and it was not possible to estimate the proportion 

of travellers. This assumption is likely to result in an underestimation of 

travel cases in the EU model, as some of the not-specified cases would be 

travel-related. 

Subtyping information Most isolates serotyped, S. Enteritidis and 

S. Typhimurium phage typed and S. 

Typhimurium tested for susceptibility to 

nine antimicrobials. 

Serovar level used. The serovar distribution of 

cases and samples with missing serovar 

information were modeled based on observed 

distributions in the relevant datasets, resulting in 

a larger uncertainty regarding the true serovar 

distribution. This was particularly the case in 

the human datasets. 

Higher level of detailing attributes cases more specifically to the right 

sources, but also leave a relatively higher proportion of cases with “unknown 

source”, as the model requires a “perfect match” between subtypes in 

humans and animal reservoirs. On the other hand, in the model with less 

subtype detailing, cases could be misplaced, as the same serovar can be 

present in different sources, and the source with higher prevalence will 

”draw” more cases. 

Food/animal sources 

included and origin of 

Salmonella prevalence 

data, 

Domestic: pork, beef, broilers, layers and 

ducks (from national surveillance 

programs). 

Imported: pork, beef, chicken, ducks and 

turkeys (from the case-by-case risk 

assessment program and retail 

monitoring). 

Pigs, broilers, turkeys and layers (from EFSA 

baseline studies or EU-harmonized 

surveillance). Differentiation between imported 

and domestic based on the EUROSTAT 

production and trade data (see below). 

The fewer the number of sources included in the model, the more likely it is 

for cases to be attributed to a wrong source. As an example, beef is absent 

from the EU model; however, S. Typhimurium is an important serovar in 

both cattle and pigs, and it is likely that some S. Typhimurium cases which 

were caused be beef are attributed to pigs in this model.  Another expected 

resulting difference of the two approaches is that in the Danish 

modelimported eggs are not included, as theyare generally considered to be 

of low importance, as they are mainly used for heat-treated products by the 

industry and there is consequently no monitoring of imported shell eggs. O; 

in the EU model, they enter as a source, where the impact is determined by 

the imported amount and the prevalence in the country of origin.  

Consumption data Domestic and imported amounts of each 

source available in the country, with no 

differentiation between countries of 

origin of imported food. 

Estimated from production, exports and imports 

reported to EUROSTAT. Specific amounts 

originating from each exporting country 

available. 

The use of trade data, allows discrimination among foods originating from 

different countries, particularly when country-specific prevalences are 

available from the BS studies. The use of these data bring along some biases 

and assumptions, as described in the methods section. 

Model dimensions Subtype (serovar, phage type, resistance 

pattern), source and year 

Serovar, source, country of human case 

reporting and country of origin of food 

The “country of origin of food” dimension allows the attribution of cases to 

the country of origin of the sources. 
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Table 2. DK model: Estimated percentage of Salmonella cases attributed to food/animal sources, 

international travel, outbreaks with source unknown and unknown sources, 2007-2009, Denmark (mean and 

95% Credibility Interval). 

Source 2007 2008 2009 2007-2009 

Broilers 0.3 (0.0-1.0) 1.3 (0.7-3.6) 0.7 (0.1-1.8) 0.9 

Imported chicken 1.4 (0.4-2.8) 5.2 (3.3-6.8) 3.7 (2.1-5.3) 3.8 

Pork 7.6 (6.0-9.3) 8.8 (7.6-10.0) 6.5 (3.6-9.7) 7.9 

Imported pork 2.0 (1.0-3.1) 0.5 (0.3-1.9) 1.3 (0.2-2.8) 1.4 

Turkeys - 0 - 0 

Imported turkey 2.0 (0.5-3.5) 2.4 (0.2-4.1) 0.7 (0.1-1.8) 1.9 

Table eggs 12.3 (11.5-13.2) 3.2 (2.5-3.9) 11.0 (8.9-13.2) 7.5 

Beef 0.2 (0.1-0.3) 0.7 (0.4-1.0) 0.7 (0.1-1.6) 0.6 

Imported beef 3.1 (2.2-4.0) 0.3 (0.1-0.7) 1.2 (0.6-1.8) 1.3 

Ducks 0.3 (0.0-0.9) 1.0 (0.1-2.7)   0.6 

Imported duck 1.4 (0.5-2.3) 

 

  0.4 

Travel 32.2 (30.4-31.4) 23.3 (23.1-23.6) 46.3 (44.4-48.2) 30.6 

Unknown source 17.7 (15.1-19.8) 13.1 (11.3-15.0) 23.4 (20.0-26.8) 16.7 

Outbreaks, unknown source 20.9 39.6 4.4 26.4 

TOTAL 2,129 3,656 1,647 7,433 

 

Table 3. EU model: Estimated percentage of Salmonella cases attributed to animal reservoirs, international 

travel, outbreaks with source unknown and unknown sources, 2007-2009, Denmark. 

Source Total source percentage
(a)

 Percentage by origin
(b)

 

Broilers 3.5 (0.5-12,5) 0 

Imported broilers   3.5 

Pigs 18.0 (3.2-61.4) 14.7 

Imported pigs   3.3 

Turkeys 19.6 (2.9-69.2) 0 

Imported turkeys   19.6 

Layers 10.1 (2.3-33.1) 1.2 

Imported eggs   8.9 

Travel 23.7 (3.6-83.0) 23.7 

Unknown source 18.3 (2.8-64.0) 18.3 

Outbreaks, unknown 

source 
6.8 6.8 

Total 26,330 26,330 

(a) Results of the EU model (de Knegt, 2003). 

(b) Total source percentage divided based on country “originating” Danish cases (de Knegt, 2003). 

 

.  
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Table 4. Comparison of the overall Salmonella prevalence and amount available for consumption in the two 

models and percentage of the number of cases reported in Denmark attributed to turkeys by the EU model 

Exporting  % of Danish cases  EU model  DK model 

country attributed to turkeys  

prevalenc

e m 

 prevalenc

e m 

BE 0.1 10.8 80  N/A N/A 

DE 24.3 7.3 14,102  15.6 N/A 

ES 1.5 39.1 222  N/A N/A 

FR 23.6 9.6 6,021  8.7 N/A 

HU 7.2 62.5 782  N/A N/A 

IE 0.1 22.7 228  N/A N/A 

IT 9.3 20.2 2,968  46.4 N/A 

LT 0.1 4.4 77  N/A N/A 

NL 0.9 9.0 512  N/A N/A 

PL 30.9 17.7 5,695  39.4 N/A 

UK 1.9 25.5 783  N/A N/A 

Total 100.0 - 31,470  18.75 23,687 

 

Table 5. Prevalence of selected serovars in the four animal sources included in the EU model in Poland (PL), 

Germany (DE) and France (FR) 

Country  Serovar Prevalence (p) 

  
Broilers Pigs Turkeys Layers 

PL S. Saintpaul 0.24 0.00 6.77 0.01 

 

S. Enteritidis 7.16 2.47 0.93 10.11 

 

S. Typhimurium 2.39 1.19 3.04 0.52 

DE S. Saintpaul 0.00 0.00 1.57 0.00 

 

S. Enteritidis 0.00 0.40 0.14 2.50 

 

S. Typhimurium 4.86 9.19 1.82 0.39 

FR S. Saintpaul 0.00 0.09 0.61 0.03 

 

S. Enteritidis 0.24 0.18 1.17 2.18 

 

S. Typhimurium 0.00 7.83 1.47 1.31 
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Table 6. Comparison of the overall Salmonella prevalence and amount available for consumption in the two 

models and percentage of the number of cases reported in Denmark attributed to broilers by the EU model 

Exportin

g  

% of Danish cases 

attributed 

EU model 

 

 DK model 

 

country 

attributed to 

broilers  

prevalenc

e m 

 

prevalence m 

AR
(a)

 - N/A N/A  6.7 N/A 

BE 9.4 20.3 7,335  8.4 N/A 

BR
(a)

 - N/A N/A  12.0 N/A 

CZ 0.4 5.5 416  N/A N/A 

DE 16.5 17.6 26,935  9.2 N/A 

ES 7.2 14.9 2,418  N/A N/A 

FR 2.1 7.6 8,644  10.0 N/A 

GR 0.1 14.8 70  N/A N/A 

HU 9.7 85.7 1,442  N/A N/A 

IE 2.0 9.9 218  N/A N/A 

IT 0.4 16.8 894  N/A N/A 

LT 0.5 6.9 2,299  6.6 N/A 

LV 0.1 4.9 27  N/A N/A 

NL 2.6 10.0 23,773  42.9 N/A 

PL 30.2 25.5 6,597  3.6 N/A 

PT 7.0 11.2 1,633  N/A N/A 

SE 0.4 0.2 71,499  4.9 N/A 

SI 1.0 1.7 3,426  N/A N/A 

SK 0.3 21.6 51  N/A N/A 

UK 9.9 3.5 8,287  N/A N/A 

Total 100.0 - 165,964  8.6 93,191 
(a)  Non-EU countries from where Denmark has imported chicken meat 

 

 

 

 

 

 

 

 



17 

 

Table 7. Comparison of the overall Salmonella prevalence and amount available for consumption in the two 

models and percentage of the number of cases reported in Denmark attributed to pigs by the EU model 

Exporting % of Danish cases EU model  DK model 

country attributed to pigs prevalence m  prevalence m 

BE 0.6 13.0 11,840  N/A N/A 

DE 6.8 12.7 123,767  10.0 N/A 

DK 81.5 8.0 3,013,472  3.1 N/A 

ES 5.9 30.7 62,648  33.3 N/A 

FR 1.1 18.5 22,896  29.6 N/A 

HU 0.3 11.6 3,611  N/A N/A 

IE 0.6 15.4 10,592  N/A N/A 

IT 0.1 16.4 4,355  N/A N/A 

NL 1.4 8.5 46,638  16.7 N/A 

PL 0.7 0.7 11,069  N/A N/A 

UK 1.0 1.0 12,969  31.8 N/A 

Total 100.0 - 3,323,857  11.9 230,440 

 

 

Table 8. Comparison of the overall Salmonella prevalence and amount available for consumption in the two 

models and percentage of the number of cases reported in Denmark attributed to layers by the EU model 

Exporting % of cases Danish cases  EU model  DK model 

country attributed to layers  prevalence m  prevalence m 

AT 0.1 2.5 341  N/A N/A 

BE 0.9 11.7 1,060  N/A N/A 

CZ 0.3 8.9 167  N/A N/A 

DE 4.8 3.5 8,999  N/A N/A 

DK 11.9 0.6 200,645  5.42 82,594 

ES 5.8 44.5 1,080  N/A N/A 

FR 0.1 6.1 121  N/A N/A 

LV 2.3 20.3 829  N/A N/A 

NL 4.1 2.6 7,595  N/A N/A 

PL 69.6 12.5 32,450  N/A N/A 

SE 0.1 0.7 2,763  N/A N/A 

Total 100.0 - 256,050  N/A 82,594 
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Figures 

 
Figure 1. Attributable fractions of Salmonella cases to domestic and imported animal sources in Denmark in 

the Danish model and in the EU model, 2007-2009. 
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Appendix A. Country-specific attribution estimates to food-animal reservoirs, travel, outbreaks and unknown sources. 

    

 AT BE CY 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.1 73 26 277 2.3 935 104 3,672 4.8 4,226 544 15,500 

Pigs 14.4 13,130 1,971 45,970 74.2 30,130 3,461 117,300 51.1 44,580 6,639 156,700 

Turkeys 3.7 3,417 503 12,090 9.2 3,750 423 14,680 6.4 5,626 618 21,480 

Layers 59.8 54,520 8,310 189,500 2.9 1,178 123 4,710 8.9 7,722 976 28,520 

Travel 12.2 11,110 1,674 38,690 0.0 0 0 0 3.8 3,334 504 11,650 

Unknown 9.4 8,605 1,267 30,210 11.2 4,554 512 17,810 24.9 21,750 3,128 77,430 

Outbreak 0.3 272     0.1 52     0.0 0     

                          

             

  CZ DE DK 

Source %  mean 95% CI  % mean 95% CI %  mean 95% CI 

Broilers 0.1 1,308 92 5,201 0.5 6,378 519 24,980 3.5 918 132 3,295 

Pigs 10.9 128,900 19,490 446,700 33.1 420,300 63,750 1,462,000 18.0 4,743 854 16,170 

Turkeys 1.8 20,710 3,080 72,250 1.3 17,000 2,561 59,330 19.6 5,167 775 18,210 

Layers 84.6 997,000 151,300 3,450,000 52.0 660,800 100,100 2,301,000 10.1 2,665 617 8,710 

Travel 1.7 20,090 3,047 69,610 5.3 67,860 10,260 236,100 23.7 6,239 946 21,850 

Unknown 0.8 9,890 -1,204 41,970 7.6 96,850 14,570 337,000 18.3 4,813 725 16,860 

Outbreak 0.0 88     0.2 1,990     6.8 1,786     

                          

             

             



             

             

  EE ES FI 

Source  % mean 95% CI %  mean 95% CI  % mean 95% CI 

Broilers 4.6 923 160 3,356 0.1 3,384 45 17,680 0.7 21 0 96 

Pigs 27.5 5,488 818 19,130 33.1 869,600 130,000 3,066,000 4.7 150 22 530 

Turkeys 2.1 421 47 1,601 12.9 339,100 50,400 1,196,000 1.6 53 5 203 

Layers 55.0 10,980 1,671 37,940 43.1 1,133,000 169,200 4,003,000 2.4 79 10 291 

Travel 7.9 1,587 244 5,460 0.0 0 0 0 80.1 2,571 387 8,939 

Unknown 2.6 516 -601 2,764 10.7 281,100 41,470 993,700 4.6 148 21 530 

Outbreak 0.3 63     0.0 469     5.9 189     

                          

             

  FR GR HU 

Source %  mean 95% CI %  mean 95% CI  % mean 95% CI 

Broilers 13.4 66,000 10,120 230,000 1.2 28,530 384 148,100 4.5 52,570 7,904 182,900 

Pigs 34.3 168,900 25,950 586,700 9.5 227,200 33,520 801,600 26.7 313,300 47,160 1,090,000 

Turkeys 12.6 62,180 9,363 217,400 0.4 9,061 468 40,570 5.4 63,760 9,558 222,200 

Layers 2.9 14,150 2,864 47,600 78.3 1,872,000 279,200 6,552,000 54.9 643,600 96,960 2,231,000 

Travel 0.0 0 0 0 2.3 55,820 8,336 195,400 0.2 1,975 298 6,840 

Unknown 36.5 179,800 27,140 627,000 8.3 197,700 25,090 721,300 8.1 94,870 14,110 331,500 

Outbreak 0.2 966     0.0 0     0.2 1,815     

                          

             

             



             

             

  IE IT LT 

Source  % mean 95% CI  % mean 95% CI  % mean 95% CI 

Broilers 1.5 100 6 486 2.3 17,680 2,639 62,030 1.2 5,244 631 19,630 

Pigs 27.2 1,810 113 8,616 73.2 560,700 85,200 1,949,000 9.5 42,750 6,428 148,700 

Turkeys 8.8 589 35 2,810 5.3 40,410 6,028 141,700 0.7 3,318 369 12,600 

Layers 14.6 971 64 4,594 2.2 16,520 2,309 59,450 86.9 390,000 59,010 1,353,000 

Travel 31.7 2,110 133 10,020 1.3 9,908 1,505 34,480 0.3 1,294 196 4,488 

Unknown 15.3 1,018 62 4,864 15.8 120,800 18,280 421,300 1.2 5,596 -4,449 27,910 

Outbreak 0.9 63     0.0 0     0.1 335     

                          

             

  LU LV NL 

Source  % mean 95% CI  % mean 95% CI  % mean 95% CI 

Broilers 4.4 96 6 449 0.9 873 92 4,135 4.6 4,455 653 15,810 

Pigs 8.5 184 13 833 13.7 13,590 2,052 47,280 27.3 26,330 3,978 91,590 

Turkeys 6.9 149 11 670 0.3 291 6 1,368 9.7 9,404 1,393 33,050 

Layers 49.8 1,073 89 4,662 82.5 81,600 12,450 282,200 26.2 25,270 4,015 87,770 

Travel 9.6 207 17 896 1.5 1,459 222 5,046 14.2 13,730 2,079 47,900 

Unknown 20.7 446 35 1,961 0.7 714 -4,236 7,337 17.5 16,920 2,521 59,240 

Outbreak 0.0 0     0.4 351     0.5 470     

                          

             

             



             

             

  PL PT SE 

Source %  mean 95% CI %  mean 95% CI  % mean 95% CI 

Broilers 25.1 796,600 120,900 2,772,000 42.3 1,357,000 202,700 4,727,000 0.5 28 2 117 

Pigs 47.8 1,520,000 229,700 5,269,000 36.3 1,164,000 175,500 4,052,000 4.8 282 42 991 

Turkeys 1.2 39,640 5,790 139,900 0.6 18,580 546 83,890 1.7 99 13 361 

Layers 23.0 731,300 111,500 2,550,000 9.1 290,400 29,270 1,138,000 2.5 145 29 506 

Travel 0.1 1,978 300 6,882 0.4 11,250 1,704 39,030 75.9 4,441 666 15,530 

Unknown 2.7 84,840 11,520 305,300 11.4 364,300 49,970 1,310,000 10.2 596 89 2,089 

Outbreak 0.1 3,484     0.0 90     4.4 260     

                          

             

  SI SK UK 

Source %  mean 95% CI %  mean 95% CI  % mean 95% CI 

Broilers 0.5 564 7 3,037 0.0 363 21 1,779 0.6 1,590 236 5,565 

Pigs 20.6 21,600 2,464 84,410 18.0 189,300 28,490 664,900 11.7 32,370 4,886 112,600 

Turkeys 4.0 4,197 452 16,740 2.6 27,580 4,066 97,930 10.1 27,930 4,208 97,290 

Layers 59.5 62,240 7,195 242,500 76.8 807,500 121,800 2,826,000 35.5 97,990 14,800 340,900 

Travel 0.0 0 0 0 0.8 8,152 1,228 28,540 24.3 67,250 10,170 234,100 

Unknown 14.7 15,370 1,716 60,450 1.7 17,940 1,124 70,500 17.8 49,270 7,449 171,200 

Outbreak 0.6 656     0.0 449     0.0 0     

 

 

 

 



Appendix B. Attribution estimates to food-animal reservoirs, travel, outbreaks
(a)

 and unknown sources in the EU regions
(b)

. 

                    

                                                           Eastern EU 
 

Northern EU 

  % mean 95% CI 
 

% mean 95% CI 

Broilers 12.9 850,800 162,700 2,828,000 
 

1.1 9,696 3,363 24,930 

Pigs 32.7 2,152,000 657,800 5,993,000 
 

11.4 101,200 39,130 235,400 

Turkey 2.3 151,700 56,120 350,600 
 

4.3 37,870 10,970 108,300 

Layers 48.3 3,179,000 1,234,000 6,994,000 
 

66.0 584,500 181,900 1,575,000 

Outbreaks 0.1 5,836 
   

0.3 3,047 
  

Travel 0.5 32,200 10,160 84,850 
 

9.8 86,950 26,120 254,100 

Unknown 3.2 207,500 65,260 532,200   7.1 62,670 15,300 186,300 

                    

  Western EU 
 

Southern EU 

   % mean 95% CI 
 

% mean 95% CI 

Broilers   3.9 77,930 18,930 242,600 
 

15.4 1,411,000 249,000 4,783,000 

Pigs 33.1 658,900 207,100 1,761,000 
 

31.5 2,888,000 1,089,000 6,655,000 

Turkey   4.8 95,900 31,710 256,000 
 

4.5 416,900 108,000 1,279,000 

Layers    38.0 757,000 178,200 2,397,000 
 

36.8 3,382,000 1,054,000 8,832,000 

Outbreaks   0.2 3,750 
   

0.0 1,215 
  

Travel   4.7 92,900 26,390 263,400 
 

0.9 80,310 24,620 222,400 

Unknown 15.4 307,200 97,720 809,100   10.9 1,001,000 384,100 2,277,000 

 

(a) The proportion of outbreak cases were derived directly from the reported data (i.e. they were not estimated and consequently no Credibility Intervals were calculated); includes 

outbreaks with unknown source. Outbreak cases for which the source was identified were assigned to the correspondent animal sources. 

(b) EU regions as defined by the United Nations. Eastern Europe: Czech Republic, Hungary, Poland and Slovakia. Northern Europe: Denmark, Estonia, Finland, Ireland, Latvia, 

Lithuania, Sweden and the United Kingdom. Southern Europe: Cyprus, Greece, Italy, Portugal, Slovenia, Spain. Western Europe: Austria, Belgium, France, Germany, Luxembourg and 

the Netherlands. 



 

 

 

Appendix C. Proportion of cases attributed to the main serovars in broilers, pigs, turkeys and layers. 

 

Broilers 
 

Pigs 
 

Turkeys 
 

Layers 

Serovar % 
 

Serovar % 
 

Serovar % 
 

Serovar % 

S. Enteritidis 85.0   S. Typhimurium 50.9   S. Enteritidis 27.9   S. Enteritidis 95.0 

S. Infantis 4.5 
 

S. Enteritidis 38.2 
 

S. Typhimurium 18.6 
 

S. Typhimurium 1.4 

S. Typhimurium 2.5 
 

S. Derby 1.8 
 

S. Newport 9.2 
 

S. Infantis 1.3 

S. Virchow 2.9 
 

S. Infantis 1.1 
 

S. Saintpaul 4.5 
 

S. Virchow 1.0 

S. Kentucky 0.6 
 

S. Newport 2.3 
 

S. Hadar 19.0 
 

S. Kentucky 0.2 

Others 4.5 
 

Others 5.7 
 

Others 21.0 
 

Others 1.0 

Total cases    2,350,000   Total cases 5,800,000   Total cases    702,400   Total cases    7,903,000 



Appendix D. Attribution estimates to food-animal reservoirs in their country of origin. The percentage column refers to percentage of EU cases 

“originated” by that country. 

                          

  AT BE CY 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.3 191 67 466 0.8 16,540 5,603 44,550 0.3 4,155 552 15,190 

Pigs 

 

23,560 10,910 47,650 

 

109,000 53,050 220,300 

 

40,090 10,190 122,900 

Turkeys 

 

2,437 947 5,810 

 

851 258 2,516 

 

456 50 1,741 

Layers 

 

31,970 6,051 107,300 

 

14,340 3,923 43,140 

 

3,045 386 11,220 

  

 

      

 

      

 

      

  CZ DE DK 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 6.0 956 247 3,045 6.7 7,650 2,587 20,900 0.5 0 0 0 

Pigs 

 

114,700 29,510 323,100 

 

645,100 265,700 1,551,000 

 

85,460 37,260 189,400 

Turkeys 

 

15,020 4,451 40,000 

 

22,310 10,170 50,260 

 

0 0 0 

Layers 

 

874,200 142,000 2,999,000 

 

440,100 124,900 1,258,000 

 

584 226 1,390 

  

 

      

 

      

 

      

  EE ES FI 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.1 0 0 0 18.4 58,490 13,020 185,800 0.0 0 0 0 

Pigs 

 

9,121 3,271 21,790 

 

1,306,000 423,700 3,556,000 

 

0 0 0 

Turkeys 

 

0 0 0 

 

302,600 55,350 1,029,000 

 

0 0 0 

Layers 

 

5,419 1,339 16,020 

 

1,414,000 406,100 4,286,000 

 

10 4 22 

  

 

      

 

      

 

      

             



             

  FR GR HU 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 2.5 35,210 6,162 120,300 10.9 27,380 499 141,600 6.0 53,660 9,881 180,800 

Pigs 

 

238,400 91,980 576,800 

 

90,550 13,560 319,100 

 

286,600 59,800 943,700 

Turkeys 

 

116,700 43,460 287,300 

 

445 54 1,754 

 

84,060 27,580 230,500 

Layers 

 

20,610 7,262 52,790 

 

1,701,000 256,400 5,944,000 

 

587,900 93,970 2,023,000 

  

 

      

 

      

 

      

             

  IE IT LT 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.1 3,927 1,474 9,996 2.4 17,440 3,194 59,030 0.0 1,192 216 4,185 

Pigs 

 

8,004 4,158 15,200 

 

299,900 51,940 1,024,000 

 

4,684 791 16,020 

Turkeys 

 

638 185 1,809 

 

56,860 19,810 153,800 

 

399 108 1,207 

Layers 

 

7 1 21 

 

32,510 10,850 82,980 

 

0 0 0 

  

 

      

 

      

 

      

             

  LU LV NL 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.0 0 0 0 1.2 876 157 3,126 1.8 1,944 890 4,067 

Pigs 

 

340 146 785 

 

3,016 544 10,190 

 

121,000 56,900 251,200 

Turkeys 

 

0 0 0 

 

0 0 0 

 

5,088 2,711 9,397 

Layers 

 

414 39 1,776 

 

196,500 69,420 486,500 

 

165,200 39,940 512,100 

  

 

      

 

      

 

      



             

  PL PT SE 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 21.3 803,600 131,400 2,768,000 14.5 1,305,000 198,500 4,535,000 0.0 7 2 20 

Pigs 

 

1,402,000 257,400 4,721,000 

 

876,000 134,800 3,040,000 

 

364 189 695 

Turkeys 

 

71,110 30,950 167,900 

 

1,342 198 5,397 

 

0 0 0 

Layers 

 

1,287,000 492,000 3,162,000 

 

239,800 27,870 928,000 

 

64 13 215 

  

 

      

 

      

 

      

             

  SI SK UK 

Source % mean 95% CI % mean 95% CI % mean 95% CI 

Broilers 0.4 412 33 2,060 5.0 1,711 628 3,999 0.8 8,632 3,920 18,300 

Pigs 

 

11,440 1,577 43,820 

 

72,300 12,190 249,600 

 

50,810 20,800 117,600 

Turkeys 

 

2,864 381 11,170 

 

71 18 220 

 

19,080 6,737 52,040 

Layers 

 

57,020 6,929 221,100 

 

768,300 192,800 2,339,000 

 

60,270 10,210 206,300 

 



Appendix E. Percentage of cases attributed to each source in the EU “originating” from each country. 

 

Country   Percentage of cases attributed to source 

    Broilers Pigs Turkey Layers 

AT 
 

0.0 0.4 0.3 0.4 

BE 
 

0.7 1.9 0.1 0.2 

CY 
 

0.2 0.7 0.1 0.0 

CZ 
 

0.0 2.0 2.1 11.1 

DE 
 

0.3 11.1 3.2 5.6 

DK 
 

0.0 1.5 0.0 0.0 

EE 
 

0.0 0.2 0.0 0.1 

ES 
 

2.5 22.5 43.1 17.9 

FI 
 

0.0 0.0 0.0 0.0 

FR 
 

1.5 4.1 16.6 0.3 

GR 
 

1.2 1.6 0.1 21.5 

HU 
 

2.3 4.9 12.0 7.4 

IE 
 

0.2 0.1 0.1 0.0 

IT 
 

0.7 5.2 8.1 0.4 

LT 
 

0.1 0.1 0.1 0.0 

LU 
 

0.0 0.0 0.0 0.0 

LV 
 

0.0 0.1 0.0 2.5 

NL 
 

0.1 2.1 0.7 2.1 

PL 
 

34.2 24.2 10.1 16.3 

PT 
 

55.6 15.1 0.2 3.0 

SE 
 

0.0 0.0 0.0 0.0 

SI 
 

0.0 0.2 0.4 0.7 

SK 
 

0.1 1.2 0.0 9.7 

UK   0.4 0.9 2.7 0.8 

Total   100.0 100.0 100.0 100.0 

  

  



Appendix F.  Estimated percentage of sporadic Salmonella cases in Denmark attributed to animal 

reservoirs originating from exporting countries and Denmark, 2007-2009. 

 

Exporting country Broilers Pigs Turkeys Layers 

Austria 0.0 0.0 0.0 0.1 

Belgium 9.4 0.6 0.1 0.9 

Cyprus 0.0 0.0 0.0 0.0 

Czech Republic 0.4 0.0 0.0 0.3 

Germany 16.5 6.8 24.3 4.8 

Denmark 0.0 81.5 0.0 11.9 

Estonia 0.0 0.0 0.0 0.0 

Spain 7.2 5.9 1.5 5.8 

Finland 0.0 0.0 0.0 0.0 

France 2.1 1.1 23.6 0.1 

Greece 0.1 0.0 0.0 0.0 

Hungary 9.7 0.3 7.2 0.0 

Ireland 2.0 0.6 0.1 0.0 

Italy 0.4 0.1 9.3 0.0 

Lithuania 0.5 0.0 0.1 0.0 

Luxembourg 0.0 0.0 0.0 0.0 

Latvia 0.1 0.0 0.0 2.3 

Netherlands 2.6 1.4 0.9 4.1 

Poland 30.2 0.7 30.9 69.6 

Portugal 7.0 0.0 0.0 0.0 

Sweden 0.4 0.0 0.0 0.1 

Slovenia 1.0 0.0 0.0 0.0 

Slovakia 0.3 0.0 0.0 0.0 

United Kingdom 9.9 1.0 1.9 0.0 

Total 100.0 100.0 100.0 100.0 

 

 

 

 

 



Appendix G. Elicitation instrument 

 

Attribution of Salmonella cases in humans to animal reservoirs using expert elicitation with cluster analysis as an 

information tool 

Dear expert, 

You are being invited to participate in an expert elicitation to attribute human cases of salmonellosis to animal 

reservoirs of the food chain. Before proceeding to the questions, please read carefully the study description. If you have 

any questions regarding data origin or units, section 4 contains a spreadsheet with a variable dictionary. 

Objectives:  

- test and validate an approach in which easily-available data can be used to relate countries with no 

attribution results to countries for which traditional attribution studies have been performed, and obtain 

estimates for the first group through expert elicitation; 

- evaluate whether this approach is useful and whether it provides sensible results 

Section 1 – Approach and instructions 

The information sheets received along with this document contain results of cluster analysis with information about 29 

European countries in different combinations, depending on data availability. The sheets are divided in nine main 

groups: 

1. Source attribution outcomes for 24 European Union Member States (Pires et al., 2011). 

2. Relative proportions of S. Enteritids, S. Typhimurium and “Other serovars” in humans and animal sources in each 

country (Pires et al., 2011).    

3. Food consumption information (FAO, 2003). 

4. Economic indicators (UNDP, 2011). 

5. Non-economic human development indicators (UNDP, 2011).  

6. Agriculture and land usage characteristics (FAO, 2011). 

7. Density of animal production (FAO, 2011).  

8. Climate data. Peel et al. (2007). 

9. Cluster results summary (Excel file).  

Each sheet from groups 1 to 8 contains a table with the data used for the analysis and the division based on the best 

cluster solution. In multi-variable sheets, the variables that drove the formation of each cluster are highlighted. For 

easier visualization of the distance between countries not in the same cluster, dendrograms are also provided. The Excel 

file contains matrices summarizing how frequently each two countries were clustered together, as well as in which 

sheets that occurred. Experts will look at how countries relate to each other in the different sheets and in the matrices 

and:  

1- provide attribution point-estimates for the selected sources in Bulgaria, the Czech Republic, Norway and 

Romania; 

2- provide minimum and maximum expected values for the point estimates; 

3- evaluate the information provided for the elicitation; 

4- evaluate the usefulness of the method. 

A more detailed description of the study background, methods and data origin can be found in sections 3 and 4. 

 



Section 2 - Questions 

1- Please, check the field you would describe as your main area of expertise: 

a) Epidemiology / Risk modelling / Risk assessment 

b) Infectious diseases / Microbiology / Parasitology 

c) Toxicology / Food chemistry 

d) Policy-making 

 

2 - Fill in the attributable fractions (%) you estimate for each source in Bulgaria, the Czech Republic, Norway and 

Romania, adding a range for your answer. If not enough information was provided for an estimate, write “NP” (for “not 

possible”) in the corresponding field. 

Source Czech Republic Bulgaria 

 % Range % Range 

Broilers       

Pigs       

Turkeys       

Layers       

Travel       

Unknown / other reservoirs       

       

Source Romania Norway 

 % Range % Interval range 

Broilers       

Pigs       

Turkeys       

Layers       

Travel       

Unknown / other reservoirs       
 

2- Please, list at least one information sheet that: 

a) was crucial for your decision (excluding the attribution results) 

 

b) was crucial for your decision but you don’t expect that information to be available for developing 

countries 

 

c) did not contribute at all for your decision 

 

d) provided information that you consider wrong or misleading 

3- Do you consider this a valid approach for source attribution? 

Section 3 – Study description 

Background 

During the last ten years, source attribution methods have become an important tool to provide risk assessors and 

managers with information for priority-targeting and policy-making (Havelaar et al. 2007; Kuchenmüller et al. 2009). 

As a consequence, different approaches have been developed for that purpose, such as microbial subtyping, analysis of 

outbreak data or case-control studies (Pires et al. 2009).   



Among the most widespread statistical methods for source attribution of Salmonella are the Hald model and its 

variations. This method is based on microbial subtyping and has been adapted and applied in Denmark (Hald et al 2004; 

Pires and Hald 2010), Japan (Toyofuku et al. 2011), New Zealand (Mulner et al. 2009), Sweden (Whalström et al 2011) 

and the United States (Guo et al. 2011). A model including 24 European countries has been recently published (Pires et 

al 2011) as a technical report prepared for the European Food Safety Authority (EFSA). 

One characteristic of the aforementioned models is that they require a large amount of good-quality data, which are 

available from the Danish surveillance system and, up to a point, from datasets maintained by Eurostat, studies 

published by EFSA and national harmonized surveillance systems. These data requirements reduce the applicability of 

such models in poor countries, where representative incidence or prevalence data is not so readily-available, and where 

the share of the burden of foodborne diseases is presumably larger than in Europe (Kuchenmüller et al. 2009).  

When data required for a statistic approach seem to lack quality or is unavailable, expert elicitations can be used to 

obtain valid attribution estimates (Batz et al., 2005), and that has been done in several countries, such as the United 

States (Hoffmann et al, 2007), the Netherlands (Havelaar et al 2008), New Zealand (Lake et. al 2010) and Canada 

(Davidson et al, 2011). This study is an attempt to validate an alternative approach for source attribution of Salmonella 

that could be applied in situations where the data normally required for the traditional models cannot be obtained.  

Cluster analysis is a technique used to group observations according to values observed for one or more variables.  

Although several methods and approaches can be used for that procedure, all of them are based on calculating the 

distance between each two observations and grouping the nearest ones according to a set of criteria. The procedure is 

then repeated using the distance between observations of two different clusters and regrouping them as one, and so on 

until on the bottom side of the tree each independent observation constitutes one small cluster, and on the top all 

observations are grouped as a large one, as described in Sharma (1996).   

Our objective is to use easily-available data as a tool to fit countries with no attribution results into a general profile 

together with countries for which traditional attribution studies have been performed, and obtain estimates for the first 

group through expert elicitation. For the present exercise, source attribution estimates will be obtained for four 

European countries with different amounts and types of information available, as an extrapolation of the results 

observed in Pires et al. (2011). The point of attribution chosen was the animal reservoir, as a consequence of the method 

used and in line with the original study. 

Methods 

Microbial subtyping approach 

The subtyping approach has so far been primarily applied to attribute foodborne pathogens. The approach involves 

characterization of the agent by subtyping methods (e.g., phenotypic or genotypic subtyping of bacterial pathogens), 

and the principle is to compare the subtypes of isolates from different sources (e.g., animals, food) with the same 

subtypes isolated from humans. The subtyping approach is enabled by the identification of strong associations between 

some of the dominant subtypes and a specific reservoir or source, providing a heterogeneous distribution of subtypes 

among the sources. Subtypes exclusively or almost exclusively isolated from one source are regarded as indicators for 

the human health impact of that particular source, assuming that all human cases caused by these subtypes originate 

only from that source. Human cases of disease caused by subtypes found in several reservoirs are then distributed 

relative to the prevalence of the indicator types. This approach utilizes a collection of temporally and spatially related 

isolates from various sources, and thus it is facilitated by an integrated foodborne disease surveillance programme that 

is focused on the collection of isolates from the major food animal reservoirs of foodborne diseases.   

Approach assumption: illnesses caused by subtypes found exclusively in one source all originate from that source. The 

method therefore assumes that these subtypes do not occur in any other potential source of exposure (e.g. foods or other 

sources not sampled e.g. environment and wild animals) because no evidence has been reported.  



 Model applicability: the approach can only be applied to hazards that have multiple subtypes (e.g. bacteria phenotypic 

or genotypic subtypes) that are heterogeneously distributed among the sources.  

 Data requirements: the subtyping approach requires a representative distribution of the subtypes of the hazard in the 

potential sources and humans. It therefore relies on the existence of public health and animal/ environment surveillance, 

providing representative data for the covered region. Additionally, it is necessary that the same subtyping methods are 

applied to both human and source/foods isolates. The approach does not require estimates of the prevalence of the 

subtypes in each source.  

The results used as reference to estimate source attribution parcels are originally from Pires et al. (2011), where the 

subtyping approach was used for attribution of Salmonella cases to broilers, pigs, turkeys and laying hens in 24 

countries of the European Union.  Cases that cannot be attributed to any of the reservoirs or have not been reported as 

travel-related are presented as “Unknown / Other sources”. This also includes cases from outbreaks for which the 

source was not identified. Outbreaks for which the source has been identified have their cases added to the appropriate 

reservoir or to the previous group, if it was caused by some other source.  

Salmonella prevalence in broilers, turkeys and pigs were obtained from the baseline studies published by the European 

Food Safety Authority (EFSA 2007; EFSA 2008b; EFSA 2010b). Human incidences were provided by the European 

Centers for Disease Control and Prevention through EFSA. Total human cases and Salmonella prevalence in layers are 

used as reported by countries to the Community summary Report on Trends and Zoonoses from 2007 to 2009, also 

published by EFSA (EFSA 2009: EFSA 2010a; EFSA 2011a). It is important to note here that the loss of data at various 

points along the surveillance chain from patient to official statistics is recognized in all countries (Wheeler et al., 1999) 

and results in different degrees of underreporting. This underreporting was compensated where necessary with the use 

of underreporting factors (EFSA, 2011b).   

Cluster analysis 

Hierarchical cluster analysis starts with all observations in a dataset belonging to the same cluster, and systematically 

creates new clusters, by separating observations which are more similar among themselves than to the remaining group 

in relation to a set of variables. The procedure is repeated until each observation constitutes its own cluster. 

In this study, an “average subject” from each cluster was chosen as the centroid to be compared with other clusters, and 

the squared Euclidean distance between observations within the same cluster was used as similarity measure; the more 

similar the subjects, the smaller the distance between them (and consequently, the smaller the squared Euclidean 

distance) and vice-versa. Variables measured in different scales which were used in the same set were standardized to 

fit a distribution with mean=0 and standard deviation=1. It is necessary to standardize the values before running the 

analysis, otherwise variables that differ thousands of units from each other (e.g., country territory in squared kilometers) 

will drive the cluster construction, annulling the influence of variables that vary in a smaller scale (e.g., percentages). 

The resulting process can be plotted as a dendrogram (or “tree”) with the distance between clusters on the vertical axis. 

Although the whole hierarchical structure can be visualized in this way, the best cluster solution was chosen for each set 

of variables to be presented. This choice was based on an evaluation of the clustering process using a) the root-mean-

square deviation (RMSSTD) of each new cluster formed, b) the semipartial R-squared (SPR), c) the R-squared (RS) and 

the distance between two clusters (CD). These measures provide a statistical reference to evaluate the homogeneity of a 

new cluster formed and the heterogeneity among the current group of clusters in each step, indicating the more 

“natural” number of clusters for a given set of observations.  

The information sheets received along with this document contain results of cluster analyses with information about 29 

European countries in different combinations, depending on data availability. They can be classified in nine major 

groups, which contain sheets with resulting clusters for one variable, as well as multi-variable sheets, which mean to 

provide a general profile of the countries concerning the way several factors combine. The main groups are: 

 



1.  Source attribution outcomes. This group contains results of the source attribution approach based on microbial 

subtyping in 24 EU countries published in Pires et al. (2011), and should be used as a reference to estimate 

attributable fractions to animal reservoirs in countries without attribution studies. The incidences refer to a period 

of three years (2007-2009), and are given in cases/100000. Sheets included are: 

a. Salmonella incidence attributable to all sources (overview table); 

b. Salmonella incidence attributable to broilers (table + dendrogram); 

c. Salmonella incidence attributable to pigs (table + dendrogram); 

d. Salmonella incidence attributable to turkeys (table + dendrogram); 

e. Salmonella incidence attributable to layers (table + dendrogram); 

f. attributable fraction of human Salmonella cases to all sources combined (overview table);  

g. cumulative attributable fractions bar graph; 

Although the percentage of travel-related cases is shown in the bar graph, it was not included in the cluster analysis, as 

differences between countries were too large and obscured the importance of the contribution of animal reservoirs. 

 

2.  Relative proportions of S. Enteritids, S. Typhimurium and “Other serovars” in humans and animal sources in each 

country (Pires et al., 2011) (5 sheets):   

a. relative proportion of reported S. Enteritidis, S. Typhimurium and “Other serovars” in humans; 

b. relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in broilers; 

c. relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in pigs; 

d. relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in turkeys; 

e. relative proportion of S. Enteritidis, S. Typhimurium and “Other serovars” in layers; 

 

3. Food consumption information (FAO, 2003) (4 sheets): 

a. relative proportions of consumption of eggs, poultry meat, pork, beef, sheep & goat, fish, seafood, raw 

animal fats and “other meats” ; 

b. consumption of poultry meat (g/person/day); 

c. consumption of pork (g/person/day); 

d. consumption of eggs (g/person/day); 

 

4. Economic indicators (UNDP, 2011). This group contains one sheet in which countries were clustered according to 

three variables: 

a. gross domestic product (GDP) per capita in U.S. dollars; 

b. percentage of the population which is economically active; 

c. percentage of the population below the national poverty line; 

 

5. Non-economic human development indicators (UNDP, 2011). This group contains one sheet in which countries 

were clustered according to four variables: 

a. literacy rate (%);  

b. mean years of schooling among adults; 

c. life expectancy in years; 

d. mortality under five years of age (per 1000 births); 

 

6. Agriculture and land usage characteristics (FAO, 2011). This group contains one tree in which countries were 

clustered according to four variables:  

a. percentage of country territory used for agriculture; 

b. percentage of economically active population working full-time in agriculture;  

c. number of farms per square kilometer of agricultural land; 

d. number of individuals employed full time in agriculture per farm unit; 



7. Density of animal production (FAO, 2011). This group contains one sheet in which countries were clustered 

according to three variables together:  

a. chickens per farm; 

b. pigs per farm; 

c. turkeys per farm; 

 

8. Climate data. This sheet contains a map of Europe showing Köppen-Geiger climate zones as updated by Peel et al. 

(2007), as well as a table extracted from the original article with a description of Köppen climate symbols and 

defining criteria. No cluster analysis was performed, as national borders and climate zones do not always coincide. 

9. Cluster results summary (Excel file). This group contains “country X country” matrices based on the best solution 

for each set of variables, showing: 

a. in which information sheets each two countries belonged in the same cluster; 

b. the probability that two countries belonged in the same cluster in the study, calculated by dividing the 

number of times they were clustered by the number of times they could be clustered, as not every country 

was present in every analysis. 

Numbers in the gray cells refer to when a country formed its own individual cluster. Climate data was not included in 

the matrices. 

 

  



Appendix H. Sources and description of the data used for the cluster analyses 

Variable Description Unit Obs 

Country Country N/A  

Population Population Persons WHO, 2011 

Attributable fractions  Proportion of human cases 

attributed to each source in the 

EU Attribution model 

% EFSA-Q-2010-00685. Available at 

(http://www.efsa.europa.eu/en/supporting/pub/184e.ht

m?WT.mc_id=EFSAHL01&emt=1) 

Attributable incidence Incidence of cases attributed 

to each animal reservoir 

Cases/100,000 pop Attributable fraction applied to the number of cases 

reported in the CSR 2007-2009  and divided by the 

population *100,000, adjusted with underreporting 

factors from Havelaar et al. (2012) 

Source consumption Estimated amount of each 

source consumed in the 

country. 

g/person/day FAO, 2003. Broilers and turkeys together as Poultry 

GDP Per Capita Gross Domestic Product per 

capita 

Euro/person Eurostat 2011 - obs 2010 figures.  

Percentage of total land used for 

agriculture  

Percentage of total land used 

for agriculture 

% Permanent agriculture area from Eurostat 2011 - 2007 

figures. CH 2005. Divided by total land area * 100 

Percentage of economically active 

population employed full-time in 

agriculture 

Percentage of economically 

active population employed 

full-time in agriculture 

% UNDP 2011 - extracted on Sep 19 from 

http://hdrstats.undp.org/en/tables/default.html 

Percentage of population below the 

national poverty line 

Percentage of population 

living below the national 

poverty line 

% UNDP 2011 - extracted on Sep 19 from 

http://hdrstats.undp.org/en/tables/default.html 

Adult Literacy Rate Percentage of adult literacy % UNDP 2011 - extracted on Sep 19 from 

http://hdrstats.undp.org/en/tables/default.html 

Mean years of schooling Adult mean years of schooling years UNDP 2011 - extracted on Sep 19 from 

http://hdrstats.undp.org/en/tables/default.html 

Life Expectancy Life expectancy at birth years UNDP 2011 - extracted on Sep 19 from 

http://hdrstats.undp.org/en/tables/default.html 

Under 5 mortality Under 5 mortality persons/1000 UNDP 2011 - extracted on Sep 19 from 

http://hdrstats.undp.org/en/tables/default.html 

Farms per square kilometer Number of farms per square 

kilometer in the country 

Farms/person Total farms / Permanent agriculture area  (FAO 2011) 

Animals per farm Number of units of each 

source per farm in the country. 

Units/farm Total animals of each type from FAOSTAT 2011 / 

Total farms from FAO 2011 

 



Appendix I. Demonstration sheets provided along with the information sheets containing results of the cluster analyses 



 



 



 



 Appendix J. Elicited estimates for Bulgaria, Norway and Romania 

Respondant 

 

Bulgaria 

 

Norway 

  

Romania 

 Expert1 Estimate Min Max Estimate Min Max Estimate Min Max 

Broilers 1 0.1 3 0.5 0.1 2 1 0.1 3 

Pigs 12 9 18 5 1 10 12 9 18 

Turkeys 1 0.1 4 1 0.1 2 1 0.1 4 

Layers 70 5.5 85 2.5 0.1 5 70 5.5 85 

Travel 2 0.1 5 80 70 90 2 0.1 5 

Unknown/Other reservoirs 14 5 20 11 5 20 14 5 20 

Expert2   

 

  

  

  

   Broilers 4 0 13 5 0 13 4 0 13 

Pigs 25 8 74 7 2 25 25 8 74 

Turkeys 6 0 15 1 0 4 7 0 15 

Layers 44 2 83 4 1 17 39 2 83 

Travel 5 0 30 80 75 85 5 0 30 

Unknown/Other reservoirs 17 4 38 4 2 11 20 4 38 

Expert3   

 

  

  

  

   Broilers 5 0 15 1 0 3 5 0 15 

Pigs 10 5 20 4 1 10 15 5 40 

Turkeys 0 0 5 1 0 3 5 0 15 

Layers 75 60 90 4 1 10 70 30 80 

Travel 0 0 5 80 70 90 0 0 15 

Unknown/Other reservoirs 10 5 20 10 5 20 5 0 20 

Expert4   

 

  

  

  

   Broilers 2 0 4.3 1 0 1.9 2 0 4.3 

Pigs 5 3 11.13 3 2 6.1 5 3 11.13 

Turkeys 0 0 1 2 0.5 3.1 0 0 1 

Layers 80 74 83 2 1.1 4.1 80 74 83 

Travel 2 2 2 80 80 80 2 2 2 

Unknown/Other reservoirs 11 4 12.5 12 3.1 15 11 4 12.5 

Expert5   

 

  

  

  

   Broilers 2 0 7 0.5 0 3 2 0 7 

Pigs 10 3 15 5 0 10 25 17 30 

Turkeys 1 0 5 1.5 0 5 1 0 5 

Layers 80 70 90 2.5 0 7 50 40 65 

Travel 2 0 7 80.5 75 90 1 0 3 

Unknown/Other reservoirs 5 1 12 10 5 15 21 10 25 

Expert6   

 

  

  

  

   Broilers 1 0 5 1 0 2 1 0 15 

Pigs 10 5 50 5 3 7 15 8 40 

Turkeys 1 0 5 2 1 3 2 0 5 

Layers 79 30 90 3 2 4 70 30 90 

Travel 1 0 3 80 70 85 1 0 3 

Unknown/Other reservoirs 7 3 10 9 3 20 11 5 15 

Expert7   

 

  

  

  

   Broilers 5 0 20 2 2 5 15 10 35 

Pigs 10 10 25 10 10 15 - - - 

Turkeys 5 3 15 35 5 50 - - - 

Layers 52 40 80 8 3 10 - - - 

Travel 8 5 10 25 15 40 - - - 

Unknown/Other reservoirs 20 5 40 20 12 35 - - - 

 



Appendix K. Individual expert guesses (most likely value, minimum and maximum) in Bulgaria (BG1 to 

BG4), Norway (NO1 to NO4) and Romania (RO1 to RO4). 
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BG3.                                                              Turkeys 
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BG4.                                                                   Layers 
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NO3.                                                     Turkeys 
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RO3.                                                            Turkeys 
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Appendix L. Joint panel estimate distributions in Bulgaria (L1), Norway (L2) and Romania (L3) 

L1. Joint estimate distributions from the full and filtered panels in Bulgaria. 



L2. Joint estimate distributions from the full and filtered panels in Norway 

 



L3. Joint estimate distributions from the full and filtered panels in Romania 
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