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SUMMARY 

Physical activity during pregnancy is well-established as a safe and beneficial lifestyle component 

and several mechanisms underlying the exercise-induced improvements of maternal and offspring 

health have been proposed. Danish and international recommendations prescribe physical activity 

at moderate intensity for 210 and 150 minutes per week, respectively, throughout pregnancy for 

all pregnant women with uncomplicated pregnancies. Nevertheless, high prevalence of insufficient 

physical activity during pregnancy, as well as in general, is a global health challenge and the 

efficacy of different physical activity intervention strategies needs to be compared to clarify how 

to increase physical activity level among pregnant women and improve maternal and offspring 

health most efficiently. 

The main objective of this PhD thesis was to investigate the effects of two different physical 

activity interventions during pregnancy; structured supervised exercise training versus 

motivational counselling on physical activity, on clinical health outcomes in healthy inactive 

pregnant women and their offspring compared to standard care, and to explore possible underlying 

mechanisms for optimized offspring health. Secondary outcomes data from the FitMum study, 

which design is described in Paper 1, formed the basis for the analyses in the thesis and papers. 

The focus of this thesis was on gestational weight gain and obstetric and neonatal outcomes during 

pregnancy and delivery (Paper 2) as well as exercise-induced adaptations to breast milk as a 

possible underlying mechanism mediating improvements of offspring health (Paper 3). The 

FitMum study was a randomized controlled trial conducted at the Department of Gynecology and 

Obstetrics at Nordsjaellands Hospital, Hillerod, Denmark from 2018-2021. The FitMum study 

randomized 219 pregnant women to one of three study groups; structured supervised exercise 

training offered three times per week throughout pregnancy (n=87), motivational counselling on 

physical activity offered through four individual and three groups counselling sessions during 

pregnancy (n=87), or a control group receiving standard care (n=45).  

In Paper 2, we investigated the effects of our two different physical activity interventions on 

gestational weight gain and obstetric and neonatal outcomes compared to standard care. Overall, 

we found no effect of any of our interventions on gestational weight gain or obstetric and neonatal 

outcomes compared to standard care. However, women with obesity in both intervention groups 

gained less weight compared to women with normal weight within the same intervention groups. 

Further, associations between physical activity measures and gestational weight gain differed 

between women with obesity and normal weight. This indicates that pregnant women with obesity 

may be more susceptible to exercise benefits compared to women with normal weight. One 
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explanation for the lack of no overall effect of the interventions on gestational weight gain and 

obstetric and neonatal outcomes could be a relatively low physical activity level in the intervention 

groups in our study. 

The aim of Paper 3 was to investigate the effects of our two physical activity interventions on the 

human breast milk metabolome and lipidome by performing metabolomic and lipidomic analyses 

on human breast milk samples obtained 7-14 days after birth. We found no major metabolite or 

lipid changes with our interventions compared to standard care, possibly due to low physical 

activity level as well, and several other confounding factors that might blur the effect of prenatal 

exercise. However, our interventions changed some metabolites and lipids compared to standard 

care, and some of the metabolites and lipids correlated with physical activity measures. Thus, 

maternal prenatal exercise may induce changes to the human breast milk metabolome and 

lipidome, which could partly explain optimized offspring metabolic health. 

In conclusion, our findings of no overall effect of physical activity on gestational weight gain and 

obstetric and neonatal outcomes contrast with previous studies showing beneficial effects of 

prenatal exercise on these outcomes, but other studies have also shown limited or no effect. The 

indication of women with obesity possibly being more susceptible to exercise benefits is in line 

with previous studies. Moreover, we found no major changes in the breast milk metabolome and 

lipidome, but found changes in some metabolites and lipids, supporting existing literature that 

propose exercise-induced adaptations to breast milk as an underlying mechanism that contributes 

to improved offspring health. A renewed effort to increase physical activity level during pregnancy 

to optimize maternal and offspring health, and subsequent long-term follow-up in human 

offspring, are warranted. Further, to expand our understanding of underlying mechanisms of 

improved offspring health, human studies designed to investigate such mechanisms, for example 

with focus on adaptations in breast milk, placenta, or epigenetic changes, are needed. 
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DANSK RESUMÉ (SUMMARY IN DANISH) 

Fysisk aktivitet under graviditeten er sikkert og kan medføre gavnlige sundhedseffekter for mor 

og barn, og forskellige underliggende mekanismer er blevet foreslået at mediere 

sundhedseffekterne. Danske og internationale myndigheder og organisationer anbefaler alle 

gravide kvinder med en ukompliceret graviditet at være fysisk aktive ved moderat intensitet i 

henholdsvis 210 og 150 minutter om ugen gennem hele graviditeten. Ikke desto mindre er der høj 

prævalens af lavt fysisk aktivitetsniveau under graviditet og generelt, hvilket udgør en global 

sundhedsudfordring, og effektiviteten af forskellige fysisk aktivitets-interventionsstrategier bør 

sammenlignes for at afklare, hvordan man kan øge det fysiske aktivitetsniveau blandt gravide 

kvinder og forbedre mødre og børns sundhed mest effektivt. 

Hovedformålet med denne ph.d.-afhandling var at undersøge effekterne af to forskellige fysisk 

aktivitets-interventioner under graviditeten; struktureret superviseret holdtræning versus 

motiverende vejledning om fysisk aktivitet, på kliniske sundhedsparametre hos raske inaktive 

gravide kvinder og deres børn i forhold til standardbehandling, samt at undersøge mulige 

underliggende mekanismer for forbedret sundhed hos børnene. Data fra sekundære endepunkter 

fra FitMum studiet, hvis design er beskrevet i Artikel 1, dannede grundlag for analyserne i 

afhandlingen og artiklerne. Fokusområderne for afhandlingen var vægtøgning under graviditeten 

og obstetriske og neonatale parametre under graviditet og fødsel (Artikel 2) samt ændringer i 

modermælkssammensætningen som følge af fysisk aktivitet som en mulig underliggende 

mekanisme, der medierer forbedringer af barnets sundhed (Artikel 3). FitMum studiet var et 

randomiseret kontrolleret studie, der blev udført på Gynækologisk Obstetrisk Afdeling på 

Nordsjællands Hospital, Hillerød, Danmark fra 2018-2021. FitMum studiet randomiserede 219 

gravide kvinder til en af tre grupper; struktureret superviseret holdtræning, der blev tilbudt tre 

gange om ugen under hele graviditeten (n=87), motiverende vejledning om fysisk aktivitet, der 

blev tilbudt gennem fire individuelle og tre gruppevejledningssessioner under graviditeten (n=87), 

eller en kontrolgruppe, der modtog standardbehandling (n=45).  

I Artikel 2 undersøgte vi effekterne af vores to forskellige fysisk aktivitets-interventioner på 

vægtøgning under graviditeten og obstetriske og neonatale parametre i forhold til en kontrolgruppe 

der modtog standardbehandling. Samlet set fandt vi ingen effekt af nogen af vores interventioner 

på vægtøgning under graviditeten eller obstetriske og neonatale parametre i forhold til 

kontrolgruppen. I begge interventionsgrupper havde svært overvægtige kvinder dog mindre 

vægtøgning sammenlignet med normalvægtige kvinder inden for de samme interventionsgrupper. 

Derudover var associationer mellem fysisk aktivitet og vægtøgning under graviditeten forskellige 
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mellem svært overvægtige og normalvægtige kvinder. Dette indikerer, at svært overvægtige 

kvinder måske i højere grad opnår gavnlige effekter af fysisk aktivitet under graviditeten i forhold 

til normalvægtige kvinder. Et forholdsvist lavt fysisk aktivitetsniveau i interventionsgrupperne kan 

være en forklaring på, at vi overordnet set ikke fandt nogen effekt af interventionerne på 

vægtøgning under graviditeten og obstetriske og neonatale parametre. 

Formålet med Artikel 3 var at undersøge effekterne af vores to fysisk aktivitets-interventioner på 

metabolomet og lipidomet i human modermælk. Dette blev undersøgt ved hjælp af metabolomics 

og lipidomics analyser på humane modermælksprøver, der blev indsamlet 7-14 dage efter fødslen. 

Vi fandt ingen store ændringer i metabolitter eller lipider i vores interventionsgrupper 

sammenlignet med kontrolgruppen, hvilket muligvis også skyldtes for lavt fysisk aktivitetsniveau 

i interventionsgrupperne, samt flere andre faktorer, der kunne påvirke modermælks-

sammensætningen og dermed sløre en mulig effekt af fysisk aktivitet under graviditeten. Vores 

interventioner forårsagede imidlertid ændringer af flere metabolitter og lipider i forhold til 

kontrolgruppen, og nogle af metabolitterne og lipiderne korrelerede med fysisk aktivitet. Fysisk 

aktivitet under graviditeten kan dermed inducere ændringer i metabolomet og lipidomet i human 

modermælk, hvilket kan udgøre en underliggende mekanisme for de gavnlige effekter på barnets 

metaboliske sundhed. 

Alt i alt fandt vi ingen overordnet effekt af fysisk aktivitet på vægtøgning under graviditeten eller 

på obstetriske og neonatale parametre. Dette er i kontrast til tidligere studier, der har vist gavnlige 

effekter af fysisk aktivitet under graviditeten på disse parametre, men andre studier har også vist 

begrænset eller ingen effekt. Indikationen af at svært overvægtige kvinder i højere grad opnår 

gavnlige effekter af fysisk aktivitet under graviditeten i forhold til normalvægtige kvinder er i tråd 

med tidligere studier. Vi fandt ingen store ændringer i metabolomet og lipidomet i human 

modermælk, men fandt ændringer i nogle metabolitter og lipider, hvilket understøtter eksisterende 

litteratur, der peger på ændringer i modermælkssammensætningen som en mulig underliggende 

mekanisme, der bidrager til forbedret sundhed hos barnet, efter at moderen har været fysisk aktiv 

under graviditeten. Der synes at være behov for en fornyet og styrket indsats for at øge det fysiske 

aktivitetsniveau blandt gravide kvinder med henblik på at forbedre sundheden hos mor og barn, 

samt efterfølgende langsigtet opfølgning af børnenes sundhed. For at udvide vores forståelse af 

mulige underliggende mekanismer for gavnlige sundhedseffekter hos barnet, er der tilmed behov 

for humane studier designet til at undersøge sådanne mekanismer, for eksempel med fokus på 

ændringer i modermælkssammensætning, moderkagen eller epigenetiske forandringer. 
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ABBREVIATIONS 
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INTRODUCTION AND OBJECTIVES 

The theme of this thesis is effects of physical activity (PA) during pregnancy on maternal and 

offspring health and potential underlying mechanisms for health-enhancing adaptations. 

PA during pregnancy is widely acknowledged as a beneficial and safe lifestyle component1–3. The 

World Health Organization (WHO) recommends all pregnant women without contraindications to 

be physically active at least 150 minutes (min) per week at moderate intensity throughout 

pregnancy1 and in Denmark specifically, the recommendation from the Health Authorities is at 

least 30 min per day (210 min per week) at moderate intensity4. Nevertheless, insufficient PA is a 

worldwide global health challenge5–7, and in Denmark, the prevalence of insufficient PA among 

pregnant women is more than 60%8. The reasons for the high prevalence of insufficient PA among 

pregnant women are complex and many, and some of the most frequently reported barriers for PA 

are nausea, tiredness and lack of time9,10. A considerable proportion of pregnant women are 

motivated to increase their PA level11 so it is crucial to improve evidence-based guidance on how 

the society and health care system can support and promote pregnant women to implement PA in 

their everyday lives in a safe and effective way. This is also mentioned by WHO in their global 

action plan on PA 2018-2030 where it is recommended to integrate assessment, brief advise and, 

when needed, referral to opportunities for appropriate supervised support on PA into care of 

pregnant women12.  

The FitMum randomized controlled trial, on which this PhD thesis is based, was designed to 

investigate how pregnant women can increase their PA level. Therefore, we investigated the 

effects of two different exercise approaches compared to a control group receiving standard care 

(CON) on PA level measured in three different ways in pregnant women. The two interventions 

were structured supervised exercise training (EXE) and motivational counselling on PA (MOT), 

respectively. The primary outcome was min per week of moderate to vigorous intensity PA 

(MVPA) from randomization to gestational age (GA) of 28+0-6 weeks, measured by a Garmin 

activity tracker. In addition to the primary outcome, we investigated several secondary outcomes 

at different timepoints during the entire study period through a multidisciplinary approach 

combining different scientific methods and fields. The overall study design of the FitMum study 

is shown in Figure 1 and described in Paper 1. 
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Figure 1. Study design of the FitMum study. Participants completed a one-week baseline period and were randomized 

(n=219) in the ratio 1:2:2 to CON, EXE, or MOT not later than at GA 16+0 weeks. Data were collected at the hospital 

three times during pregnancy (visit 1-3), at delivery (visit 4), and two times in the first year after delivery (visit 5 and 

6). Data were also collected via online questionnaires and continuously throughout the study period by the activity 

tracker. Purple: participant, green: partner, yellow: offspring. GA; Gestational age, CON; Control, EXE; Structured 

supervised exercise training, MOT; Motivational counselling on physical activity, DLW; Doubly labelled water, 

DXA; Dual-energy X-ray absorptiometry. 
 

Some of the secondary outcomes in FitMum relate to how PA during pregnancy affects health 

outcomes in mother and child, and possible underlying mechanisms, which are research areas that 

call for further investigation. The focus in this thesis is to investigate health outcomes of the 

FitMum interventions on mother and child, and possible underlying mechanisms focusing on 

exercise-induced adaptations to breast milk (see objectives below). The outcomes included in this 

thesis are gestational weight gain (GWG) (self-reported prepregnancy weight and measured at visit 

1-4), obstetric and neonatal outcomes from the medical records, and breast milk composition 

(samples obtained at visit 5). 

 

The FitMum study was approved by the Danish National Committee on Health Research Ethics 

(#H-18011067) and the Danish Data Protection Agency (#P-2019-512). Written informed consent 

was obtained from all participants. The study was registered with clinicaltrials.gov 

(#NCT03679130).   

  

https://clinicaltrials.gov/
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Objectives and hypotheses 

The main objective of this PhD thesis was to investigate the effects of PA during pregnancy 

(FitMum interventions) on clinical health outcomes in healthy inactive pregnant women and their 

offspring, and to explore possible underlying mechanisms for optimized offspring health, focusing 

on: 

• GWG and obstetric and neonatal outcomes during pregnancy and delivery (Paper 2) 

• Breast milk composition 7-14 days after delivery investigated by metabolomics and 

lipidomics analyses (Paper 3) 

 

We had two predefined hypotheses for GWG (described in the statistical analysis plan for the study 

available with the trial registration at clinicaltrials.gov): 

• Pregnant women in the EXE group gain less weight than those in the MOT group. 

• Pregnant women in the MOT group gain less weight than those in the CON group. 

 

The remaining investigations in this thesis were explorative. 

 

The rest of the thesis constitutes 1) a background section describing this PhD project placed in the 

context of international state-of-the-art research within in the subject area, 2) three chapters 

summarizing and discussing the methods and results of the three papers included in the thesis in 

relation to international state-of-the-art research within the subject area, and 3) conclusions 

and perspectives for future research. The three papers that this thesis is based on (see page 7) can 

be found in the end after the references.  
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BACKGROUND 

Impact of poor maternal prenatal lifestyle on maternal and offspring health in 

humans 

The idea of in utero environmental influence on offspring metabolic health and risk of 

development of type 2 diabetes (T2D), metabolic syndrome (MetS) and cardiovascular disease 

later in life originated several decades ago with the Developmental Origins of Health and Disease 

Hypothesis13,14 and has been confirmed more recently15. Epidemiologic insights gained from 

historical events of undernutrition, such as the Dutch famine in 1944-1945, have indicated that in 

utero exposure to maternal undernutrition increases the risk for development of obesity later in 

life16,17. Furthermore, low birth weight (BW) has been associated with increased risk of developing 

T2D later in life18. Other studies have indicated that maternal obesity and gestational diabetes 

mellitus (GDM) increase the risk for high BW and development of obesity, T2D and 

cardiovascular disease in adult offspring as well19–21. Thus, a U-shaped relationship between BW 

and long-term metabolic health seems to exist, where both low and high BW are associated with 

increased risk of obesity, metabolic and cardiovascular diseases later in life22. In 2016, the 

prevalence of overweight or obesity (Body mass index (BMI) ≥25 kg/m2) among women in general 

was 54% in Europe23 and above 60% in the United States24. Among pregnant women, the global 

prevalence of overweight and obesity in 2014 was estimated to be 38.9 million with 14.6 million 

pregnant women being obese (BMI >30 kg/m2)25.   

Impact of maternal obesity and gestational diabetes mellitus on maternal health 

Maternal overweight or obesity during pregnancy increases the risk of miscarriage, excessive 

GWG, GDM, and preeclampsia19. Prenatal overweight and obesity have also been associated with 

increased risk of caesarean section compared to normal weight women26. Moreover, GDM is, 

besides the immediate risks to pregnancy, associated with several long-term adverse metabolic 

health effects in mother, including increased risk of recurrent GDM, T2D, MetS, hyperlipidemia 

and obesity19. A Danish research group headed by Peter Damm investigated the long-term effects 

of GDM on both maternal27,28 and offspring20,21 metabolic health. To investigate maternal health 

outcomes, they applied oral glucose tolerance test (OGTT) or glucagon test in women with 

previous diet-treated GDM at a median of 10 years after pregnancy27. They found that 40% of the 

women had diabetes (89% of these had T2D) and 27% had impaired glucose tolerance27, which 

respectively was a ten times higher and a two times higher incidence compared to the background 

population of 30-60-year-old females from the Inter99 study29. In the same cohort of women, a 
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three-fold higher prevalence of MetS was found among previously diet-treated GDM women 

compared to a control group that constituted of 1000 age-matched women randomly selected from 

the Inter99 study30 and who had a normal weight BMI on average and were expected to have 

similar prevalence of GDM as the Danish background population28. Moreover, MetS was 

significantly more prevalent in obese women with previous GDM compared to normal weight 

women with previous GDM. Significantly higher prevalence of MetS was also found for control 

women with obesity compared to control women with normal weight28.  

Impact of maternal obesity and gestational diabetes mellitus on offspring health 

Maternal overweight or obesity is associated with increased risk of macrosomia (BW>4000g), 

having a large for gestational age (LGA) infant, small for gestational age (SGA) infant, intrauterine 

growth restriction, and development of overweight and obesity later in life19. The transmission of 

obesity across generations was further demonstrated in a study of offspring born from obese 

women before and after a gastric bypass surgery31. The prevalence of obesity in offspring at seven 

years or older was markedly higher among offspring born before maternal gastric bypass surgery 

compared to offspring born after surgery when compared at the same age31. Besides maternal 

obesity, GWG above the Institute of Medicine guidelines32 during pregnancy has also been 

associated with higher risk of macrosomia and LGA33,34, as well as increased offspring BMI later 

in life35. Offspring exposed to GDM in utero has been associated with increased metabolic risk 

later in life20,21. The above-mentioned Danish research group exploring long-lasting effects of 

GDM on maternal and offspring metabolic health used an OGTT to investigate glucose tolerance 

in 18-27-year-old offspring of women with GDM compared to offspring of women from the 

background population, who were assumed to have a relatively low genetic risk of developing 

T2D. They found a higher prevalence of T2D and impaired glucose tolerance among offspring of 

women with GDM compared to offspring from the background population20. Being exposed to 

GDM in utero was also associated with a doubling of the risk of being overweight and a four-fold 

increase in the risk for developing MetS compared to background population offspring21. 

Similarly, follow-up on 10-14-year-old offspring of women with GDM showed increased risk of 

obesity and having fat percentage (measured by air displacement plethysmography), waist 

circumference and sum of skinfolds above 85th percentile, compared to offspring of women 

without GDM36. Lowe et al. also investigated influence of maternal blood glucose levels during 

pregnancy on offspring adiposity outcomes in the same cohort37. Higher HbA1c and maternal 

blood glucose concentrations after an OGTT performed around GA 28 weeks were associated with 

increased risk of being overweight/obese and having fat percentage, waist circumference and 
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skinfold thickness above 85th percentiles37. Higher maternal HbA1c level measured at GA 20-34 

weeks has also been associated with higher fasting blood glucose concentration and lower insulin 

sensitivity in offspring at 4-7 years of age compared to offspring of women with lower HbA1c 

levels during pregnancy38. 

 

Exercise during pregnancy improves maternal health 

It is well-established from research in humans that PA during pregnancy induces several positive 

health effects in mother1–3. In fact, aerobic exercise has been suggested to be more effective than 

metformin on reducing the risk of GDM and perhaps excessive GWG in pregnant women with 

overweight39. PA during pregnancy reduces GWG40–43 and the incidence of several pregnancy and 

delivery related complications including GDM, gestational hypertension, preeclampsia, preterm 

delivery and caesarean section42,44–46. Looking at other delivery outcomes, the literature is more 

divergent. In a systematic review and meta-analysis, Davenport et al. reported a decreased risk of 

instrumental delivery in exercising versus non-exercising pregnant women, but no association of 

other delivery outcomes with exercise47. Some studies found shorter duration of labor among 

physically active women48,49, whereas others found no effect of exercise50. Likewise, prenatal 

exercise has been indicated to reduce risk of induced labor51 and pain during labor52, but did not 

affect the use of epidural analgesia52. Focusing on mental health, exercise during pregnancy has 

been associated with reduction of maternal prenatal53 and postpartum depressive symptoms54–56. 

Similar to observations of improved cardiovascular fitness with regular exercise training in non-

pregnant populations57–60, regular exercise training during pregnancy can also increase aerobic 

capacity by improving overall cardiovascular function61. Further, prenatal exercise programs may 

reduce the risk62 and intensity63 of low back pain during pregnancy.  

Focusing on maternal glucose metabolism, prenatal exercise training has been indicated to reduce 

maternal fasting blood glucose, blood glucose response to an OGTT, insulin concentration, insulin 

resistance, incidence of GDM, and required amount of insulin for the management of GDM, 

compared to non-exercising controls in pregnant women with or without GDM64,65. Likewise, a 

recent review and meta-analysis of randomized controlled trials with supervised exercise training 

in pregnant women with overweight and obesity found that exercising groups had a lower 

increment in insulin resistance derived by the Homeostatic Model Assessment for Insulin 

Resistance (HOMA-IR) and a lower post-prandial blood glucose concentration measured two 

hours after an OGTT compared to non-exercising controls66. Also, McDonald et al. investigated 

the effects of exercise in normal weight, overweight and slightly obese pregnant women and 

showed reduced insulin concentration and insulin resistance derived by HOMA-IR in late 
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pregnancy, as well as attenuated increase in insulin concentration from GA 16-36 weeks, 

compared to non-exercising pregnant women67. 

Regarding maternal lipid metabolism, blood lipid regulation seems to be improved with prenatal 

exercise training as well61. Both triglyceride and total cholesterol have been found to be inversely 

associated with PA68. However, a recent secondary analysis combining data from two longitudinal 

exercise intervention studies in pregnant women found no effect of exercise on fasting blood 

concentrations of triglyceride, total cholesterol, high-density lipoprotein or low-density lipoprotein 

in late pregnancy67.  

Moreover, maternal exercise has been indicated to influence cytokine levels69,70. Interleukin-6 (IL-

6) concentration was increased with high amount of objectively measured MVPA compared to 

low MVPA in overweight and obese pregnant women69 and regular exercise has been shown to 

decrease tumor necrosis factor alpha (TNF-α) levels compared to controls in normal weight 

women70. These exercise-induced changes in IL-6 and TNF-α levels might improve insulin 

sensitivity, since increased TNF-α is associated with insulin resistance, and IL-6 secreted from 

muscle tissue (which is likely the case when IL-6 is increased in response to exercise) is anti-

inflammatory and associated with increased lipolysis and fat oxidation, as well as inhibition of 

TNF-α71. Considering maternal metabolic hormones, prenatal exercise has been associated with 

lower levels of leptin during pregnancy68. These findings support the positive impact of prenatal 

exercise on insulin sensitivity since leptin is a marker of obesity and has been associated with 

inhibition of insulin secretion from pancreatic beta cells71. 

In summary, a large body of evidence suggests that PA during pregnancy can improve maternal 

metabolic and cardiovascular health and reduce the risk of pregnancy and delivery related 

complications. As highlighted in a systematic review of meta-analyses by Hayes et al., 

investigating intervention components involved in the effectiveness of interventions are important 

to advance our understanding of how to optimize health benefits from prenatal exercise44. 

 

Effects of maternal exercise on offspring health 

Focusing on effects of maternal exercise on human offspring health indicates several beneficial 

effects. Even grand-maternal lifestyle seems to influence obesity risk of grandchildren shown in a 

large study with 14,000 grandmother-mother-child triads72. In this study a lower risk of being 

overweight or obese in adolescence or young adulthood was found in grandchildren of women 

with the healthiest self-reported lifestyle during pregnancy, including being physically active, 

compared to grandchildren of women with the least healthy prenatal lifestyle72. The literature is 

inconsistent regarding the effects of maternal prenatal exercise on offspring anthropometric 
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parameters showing both optimization of BW into a healthy range with exercise45,73 and no effect 

of exercise on mean (by far most reported) BW46,74,75. However, prenatal exercise has been shown 

to decrease the risk of macrosomia74 and LGA76. Already 25 years ago, offspring body 

composition was suggested to be improved by prenatal exercise77. Clapp reported skinfold 

thicknesses at birth and five years after, and found reduced fat mass at birth in offspring of 

exercising women compared to offspring of pregnant women who were active before pregnancy 

but stopped exercise during pregnancy77. The results of a more favorable body composition among 

offspring born from exercising women were still present at five years of age77. Since then, more 

studies using measurements of skinfold thicknesses have supported these findings by indicating 

that prenatal exercise reduces offspring fat percentage at birth78 and in 1-month old infants79 

compared to offspring of non-exercising controls. A recent study found increased lean mass 

measured with Dual-energy X-ray absorptiometry (DXA) scan within 48 hours of birth in 

offspring of women who participated in a lifestyle intervention including PA during pregnancy80. 

Likewise, objectively measured PA during pregnancy has been shown to be positively correlated 

with infant fat-free mass measured by air displacement plethysmography 11-19 weeks after birth81. 

Conflicting evidence exists regarding longer term follow-up on anthropometric outcomes in 

offspring born from mothers who participated in lifestyle interventions during pregnancy. A recent 

systematic review and meta-analysis showed no overall association between lifestyle 

interventions, including PA, and weight and BMI in offspring aged one month to seven years82. 

These findings were supported by a recent study that found no effect of a 12-week prenatal 

structured exercise program on iso-BMI (BMI adjusted for sex and age) and proportion of 

offspring with overweight at seven years of age compared to offspring of control group mothers83. 

In contrast, self-reported moderate dose of exercise during pregnancy was associated with lower 

risk of being overweight/obese among 5,125 eight-year-old offspring compared to offspring of 

mothers who reported to be sedentary during pregnancy84. 

Exercise during pregnancy has been shown to improve development of fetal cardiovascular 

autonomic control85 and the improvement continued in infancy86. This was shown by May et al. 

in utero at GA 36 weeks85 and in one-month-old infants86 where heart rate variability was increased 

with exercise compared to non-exercising women. Recently, May et al. have also suggested that 

maternal aerobic exercise during pregnancy improves cardiac function and outflow parameters 

measured at GA 34-36 weeks87. Furthermore, prenatal exercise seems to improve neuromotor 

development indicated by increased neuromotor skills in one-month-old infants of exercising 

women compared to infants of non-exercising controls88. This improved capacity for movement 

suggests that offspring born from women who exercised during pregnancy may be more physically 
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active, thereby potentially reducing their risk of developing childhood obesity88. Objectively 

measured maternal MVPA has also been associated with improved offspring motor development 

in older offspring aged 12-30 months (22 months old on average)89. Additionally, objectively 

measured PA in 2974 one-year-old infants were positively associated with maternal PA during 

pregnancy, regardless of whether the infants were able to walk independently90. Some of the health 

benefits of exercise during pregnancy on mother and child are summarized in Figure 245 with kind 

permission from Elsevier (license # 5226961297745). 

 
Figure 2. Health benefits of exercise during pregnancy on mother and child. GDM; gestational diabetes mellitus, 

GWG; gestational weight gain, PE; preeclampsia, PWR; postpartum weight retention. Reprinted from Tissue and Cell, 

72, Bhattacharjee, Mohammad and Adamo, Does exercise during pregnancy impact organs or structures of the 

maternal-fetal interface?, 101543, Copyright (2021), with permission from Elsevier (license # 5226961297745)45. 

 

 

As highlighted by Kusuyama and colleagues91, the effects of maternal exercise on long-term 

metabolic effects in adult human offspring have not been studied due to the long human generation 

times that complicates follow-up during the entire lifespan. However, when investigating effects 

of lifestyle behaviors, including prenatal exercise, on human offspring metabolism and risk of 

development of obesity and lifestyle related diseases, long-term follow-up is important since these 

conditions typically occur later in life. Therefore, importantly, rodent models, which have a shorter 

generation timeline, have been used to investigate underlying mechanisms of optimized offspring 

metabolic health in adulthood after being exposed to prenatal exercise. 

Animal studies have shown that maternal exercise during pregnancy effectively improves 

offspring metabolic health22,91,92, which leads to the hypothesis that exercise during pregnancy can 



Thesis, page 22 

improve metabolic health of human offspring as well and contribute to combat the obesity 

epidemic. Studies of maternal exercise in pregnant dams have shown increased glucose 

tolerance93–96 and insulin sensitivity95,96, and decreased insulin concentration93,94 in both male and 

female adult offspring. Prenatal maternal exercise has also been shown to reduce offspring body 

weight and fat mass93–95 and improve cardiac function97,98. Like the indications of increased 

offspring PA after maternal prenatal exercise in humans, a higher PA level in offspring of 

prenatally active dams compared to offspring of sedentary dams has been indicated in adult mice 

as well99.  

 

Potential mechanisms underlying prenatal exercise-induced optimization of 

offspring health  

Adaptations in breast milk 

Some of the beneficial effects of exercise on optimized offspring metabolism might be conferred 

via the breast milk. Several studies have investigated the influence of maternal postpartum exercise 

on human breast milk components100–104 and shown improvements of breast milk composition 

after acute100 and chronic101 postpartum maternal exercise, whereas only a few studies have 

focused on the influence of maternal exercise during pregnancy98,105.  

Focusing on effects of prenatal maternal exercise on breast milk, Harris et al. have recently 

proposed exercise-induced adaptations to breast milk as an underlying mechanism for improved 

offspring metabolic health after maternal prenatal exercise. In this study, they applied voluntary 

wheel-running in mice two weeks prior to conception and throughout pregnancy (three weeks in 

mice) and a cross-fostering model to isolate the effects of exercise-trained milk on metabolic health 

and cardiac function in adult mouse offspring. Both male and female offspring of sedentary dams 

during pregnancy but cross-fostered immediately after birth with exercise-trained dams (SED-

TRAIN) had lower body weight, percentage fat mass in adulthood compared to offspring of trained 

dams cross-fostered with sedentary dams (TRAIN-SED). Improved glucose tolerance and 

decreased insulin concentration were also found in adult male SED-TRAIN offspring compared 

to TRAIN-SED98. These findings highlight the importance of exercise-induced adaptations to 

breast milk as a mediator to confer benefits of maternal exercise to offspring metabolism. 

Human breast milk is synthesized by lactocytes in the breast alveoli. The lactocytes produce the 

milk continuously from water, lactose, fat, amino acids, minerals, and vitamins from maternal 

blood and the milk is stored in the alveoli until endogenous oxytocin stimulates the muscle cells 

around the alveoli to contract and send milk into the milk ducts towards the nipple during 

breastfeeding106. When breastfeeding is well established, mature human milk contains of almost 
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90% water and on average 1g protein, 4g fat and 7g carbohydrates per 100 mL milk107. The 

carbohydrates in the milk contain up to 15% oligosaccharides in both humans and mice and there 

are more than 150 difference oligosaccharides present in human milk, including 3’-sialyllactose 

(3’-SL) and 6’-sialyllactose, whereas mouse milk only contains these two different 

oligosaccharides108. Despite similarities in human and mouse milk, comparison between animal 

and human studies needs to be done cautiously. Harris et al. also investigated which components 

of milk that mediate the beneficial effects of maternal exercise on offspring health. They identified 

an exercise-induced increase in 3′-SL in breast milk in mice and showed that 3’-SL in breast milk 

mediated the beneficial effects of maternal exercise on mouse offspring’s metabolic health and 

cardiac function. They also showed a positive correlation between PA measured with 

accelerometry three times during pregnancy and 3′-SL concentration in human breast milk 

obtained two months postpartum98. Moreover, Ribeiro et al. investigated effects of maternal 

prenatal exercise in rats, and found changes in maternal milk composition, including lower total 

cholesterol concentration, after low intensity treadmill exercise three times per week throughout 

pregnancy and lactation compared to milk from sedentary dams105. Further, this study showed 

lower body weight, fat depots, fasting plasma glucose concentration, insulin concentration, and 

insulin resistance in offspring from exercise-trained dams105. 

Overall, these studies show improvements of offspring metabolic health after maternal prenatal 

exercise and propose exercise-induced adaptations to breast milk as an underlying mechanism to 

confer the beneficial effects. However, the effects of prenatal chronic maternal PA/exercise 

training on human breast milk composition, for example the breast milk metabolome and lipidome, 

are unknown. 

Maternal postpartum exercise has no adverse effects on volume and macronutrient composition of 

breast milk102,103, infant acceptance of breast milk104, and infant growth102,109 in humans. Thus, 

lactating mothers can be reassured to practice exercise of moderate to high intensity during their 

breastfeeding period and we hypothesize that the same applies to practicing exercise during 

pregnancy.   

Other potential mechanisms  

Other mechanisms that may potentially mediate the beneficial effects of maternal prenatal exercise 

on offspring metabolism include among others epigenetic changes in fetal tissues and fluids, and 

adaptations in the placenta. Secretion of cytokines from maternal skeletal muscle tissue 

(myokines), for example IL-6, in response to exercise has also been proposed to affect placental 

development and optimize fetal growth trajectories110. 
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Regarding epigenetic changes, a recent review of human studies suggested that there may be an 

association between maternal lifestyle, diet and PA during pregnancy and epigenic changes in the 

offspring111. Epigenetic changes include DNA methylation, micro-RNA changes and histone 

modification and can alter expression of genes without changing the DNA sequence. DNA 

methylation can increase or reduce expression of a gene depending on the site of methylation, but 

in general increased DNA methylation results in decreased expression of target genes. The review 

included 16 human studies and four of these investigated the association between PA and 

epigenetic changes, more specifically DNA methylation in cord blood and infant blood spots, and 

found an overall association between PA and changes in offspring DNA methylation111. Two of 

these studies were randomized controlled studies that intervened on both diet and PA and found 

their interventions to be associated with changes in DNA methylation of offspring sites of genes, 

potentially involved in offspring growth and body composition, as well as attenuation of DNA 

methylation changes associated with exposure to GDM in utero80,112. Studies of adult offspring 

skeletal muscle tissue in mice have found that maternal exercise before and throughout pregnancy 

prevents the detrimental effects of high-fat-diet-induced hypermethylation of the peroxisome 

proliferator-activated receptor γ coactivator-1 α (PGC-1α) promoter and subsequently decreased 

expression of PGC-1α (plays a key role in mitochondrial biogenesis and oxidative metabolism) 

and some of its target genes113,114. Epigenetic modulations of genes involved in mitochondrial 

biogenesis in cardiac tissue in offspring mice after maternal prenatal exercise have also been 

suggested to be involved in maternally exercise-induced improvements in offspring health22. 

Moreover, maternal prenatal exercise has been indicated to alter expression of placental genes 

essential for adequate nutrient delivery to the fetus and optimal fetoplacental growth, and to 

improve placental morphology and vascularization in humans and rodents45,91. Further, maternal 

exercise-induced cytokine secretion by the placenta, called placentokines and exerkines as well 

because they are secreted in response to exercise, have also been proposed to be involved in 

improved fetal development and potentially long-term offspring metabolic health. Recent studies 

have shown increased placenta expression and circulating levels of the placentokines apelin115 and 

superoxide dismutase 3116 in response to maternal prenatal exercise. Maternal exercise-induced 

apelin has been indicated to improve offspring metabolic health by inducing fetal brown adipose 

tissue adipogenesis115, whereas superoxide dismutase 3 seems to influence offspring metabolism 

by increasing expression of genes involved in metabolic regulation in fetal offspring liver116.  
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Impact of genes and environmental factors after birth 

Besides the impact of maternal prenatal lifestyle, poor as well as physically active, other factors 

such as genetic inheritance and environment after birth can also influence offspring health. A meta-

analysis of twin studies showed that genetic factors had a strong effect on the variation in BMI at 

all ages from 1-18 years and that environmental factors affected variation in BMI in childhood but 

the effect disappeared in adolescence117. Moreover, the influence of genes and family environment 

on childhood obesity have been investigated in adoption studies that showed correlations between 

adoptees and adoptive parents but substantially stronger correlations between parents and their 

biological offspring. This supports an influence by the family environment, but at the same time 

highlights the importance of genes117. Interaction between environment and genes may also exist, 

meaning that the effect of the environment on offspring health can be modified by the genotype or 

the other way around. For example PA has been shown to reduce the genetic variance in BMI and 

waist circumference in early adulthood, which suggests that the function of genes predisposing to 

obesity is suppressed in persons who are physically active117. An example of an adoption study is 

a study by Stunkard et al. published in New England Journal of Medicine in 1986118. This study 

investigated 540 adult Danish adoptees divided into four weight classes (thin, medium weight, 

overweight, obese) and found a strong correlation between weight class of adoptees and mean 

BMI of their biological parents, while there was no correlation between weight class of adoptees 

and mean BMI of their adoptive parents. Thus, the authors concluded that genetic factors are 

important determinants of adult offspring weight, which on the other hand does not seem to be 

influenced by family environment alone118. 

In summary, impact of genes and environmental factors after birth on offspring health needs to be 

considered when designing and evaluating studies investigating the effect of maternal prenatal 

lifestyle, including PA behavior, on offspring health. 

 

Exercise during pregnancy is safe for mother and offspring 

A large body of evidence from human studies supports moderate intensity exercise during 

uncomplicated pregnancy as a safe lifestyle behavior for mother and child. Prenatal exercise does 

not increase risk of miscarriage (fetal mortality <GA20 weeks)119, perinatal mortality including 

stillbirth (GA≥20 weeks) and infant mortality (before 28 days of life)119, birth defects120, low BW 

(<2500g)121 or preterm delivery44,121. Some studies even show a decreased risk of low BW76 and 

preterm delivery76,122 with exercise. Additionally, exercise at vigorous intensity has also been 

indicated to be safe for healthy low-risk pregnant women in a meta-analysis showing no increased 

risk of low BW or SGA infants, as well as preterm delivery123. Traditionally, activity restriction 
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has been recommended for women with high-risk pregnancies, and Bendix et al. reported in 2015 

that most Danish obstetricians and midwives prescribe activity restriction in high-risk 

pregnancies124. However, a recent review concluded that activity restriction do not significantly 

prevent preterm birth even among women with the highest risk of preterm birth, for example 

having short cervices or ruptured membranes, and that activity restriction should not be routinely 

recommended to prevent preterm birth125. Another systematic review of the evidence of harms of 

PA for women with pregnancy complications126 found that there is no strong evidence to 

recommend pregnant women with most pregnancy complications to avoid being physically active. 

The authors proposed that 11 current contraindications for prenatal exercise (e.g. gestational 

hypertension, overweight/obesity and twin pregnancies) should no longer be defined as 

contraindications, since there is no strong evidence of harms and that pregnant women with these 

complications might even improve their conditions by being physically active. Further, they 

proposed to redefine 10 relative contraindications (e.g. mild preeclampsia and mild respiratory 

diseases) for which pregnant women in the future can be advised to do MVPA with or without 

modifications and maintain daily activities. They also support 10 absolute contraindications for 

PA (e.g. severe respiratory diseases and placental abruption) that should remain as absolute 

contraindications where MVPA should be avoided, however daily activity should be 

maintained126.  

In summary, exercise is safe and highly recommended during pregnancy for women with 

uncomplicated pregnancies. Recommendations of prenatal exercise at vigorous intensity and for 

pregnant women with different pregnancy complications need to be re-evaluated to strengthen the 

beneficial effects of PA on maternal and offspring health outcomes. 
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PAPER 1: INTERVENTIONS AND METHODS IN THE FITMUM 

STUDY 

The FitMum study was designed as a single-site randomized controlled trial and conducted at the 

Department of Gynecology and Obstetrics at Nordsjaellands Hospital, Hillerod, Denmark. 

Participants in the study were recruited from October 2018 – October 2020 and the last participant 

gave birth in May 2021. The study was designed to explore strategies to increase PA during 

pregnancy among women with low PA, and to assess the effects of PA on health outcomes in 

mother and child. More specifically, the primary objective was to investigate the effects of two 

different PA approaches, structured supervised exercise training (EXE) versus motivational 

counselling on PA (MOT), compared to a control group receiving standard care (CON) on the 

primary outcome MVPA from randomization to GA 28+0-6 weeks. The FitMum study was a 

multidisciplinary study and in addition to the primary outcome, we investigated several secondary 

outcomes, for example how PA during pregnancy affected health outcomes in mother and child as 

well as possible underlying mechanisms, which are included in this thesis. Paper 1 is a protocol 

paper describing the overall study design and methods of the FitMum study. 

 

Discussion of study design and findings of physical activity level and intervention 

adherence  

Participants 

We included healthy, inactive, pregnant women who were to give birth at Nordsjaellands Hospital, 

Hillerod. Numbers of women included, randomized, and analyzed in the study are shown in flow 

diagrams until delivery (Figure 1, Paper 2) and until visit 5 (7-14 days after delivery) (Figure 1, 

Paper 3). In our two-year inclusion period from October 1st, 2018 to September 30th, 2020, 8245 

women attended first trimester scan at Nordsjaellands Hospital and were exposed to the FitMum 

study recruitment material. This number corresponds to around 7% of all women giving birth in 

Denmark over two years (currently around 60,000 births per year)127. Of these 8245 women 

exposed to the study recruitment material, 11% (n=872) were screened for eligibility in the study 

by completing an online questionnaire. Of these 33% (n=284) remained eligible for further 

assessment of whether they met the criteria for inclusion in the study and most of these women 

were included (n=220) and randomized (n=219) to one of the three study groups one week after 

inclusion (CON: n=45, EXE: n=87, MOT: n=87). Thus, 3% of the women exposed to the 

recruitment material were included in the study (220 out of 8245 women) and of women interested 

in participating in the study, hence screened for eligibility (n=872), 25% were included in the study 
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(n=220). Other randomized controlled trials with lifestyle interventions, including exercise 

training, in pregnant women have found similar inclusion rates ranging from 16-37% of women 

assessed for eligibility63,128,129. Further research is warranted in women who do not sign up for 

human clinical trials like FitMum, including the reasons for not signing up. In our study, 7373 

women (89% of women giving birth in the study period) did not fill the online screening 

questionnaire.  

Nordsjaellands Hospital has a diverse uptake of pregnant women from 12 municipalities in North 

Zealand that are comparable to large parts of Denmark with regards to education level, occupation 

level and ethnicity, but have higher average household income130. Thus, we expected our study 

population to be relatively representative compared to other regions of Denmark. However, it is 

unknown whether the outcomes of our study would differ if the study was carried out in pregnant 

populations in other regions of Denmark or in other countries with different socioeconomic status, 

circumstances for participating in interventions (different transportation time to gym/swimming 

pool etc.), distributions of prepregnancy BMI, distributions of women being nulli- versus 

multiparous etc. Also, as in all other intervention studies there is a risk of selection bias since 

women with more resources and motivation towards a healthy and physically active lifestyle might 

be more likely to sign up for a study like FitMum. Therefore, it is unknown whether our results 

are generalizable to pregnant women in other regions of Denmark, in other countries, or with 

different ethnic background than Danish, or obstetric or medical complications.  

Prepregnancy BMI (Paper 2), smoking and alcohol consumption before pregnancy (unpublished 

data) in our study population of 219 randomized women (mean age 31.5 ± 4.3 years) were 

compared to data from Danish women aged 25-34 years in a national health survey carried out by 

the Danish Health Authorities in 2017131. In our study population, the prevalence of normal weight, 

overweight and obesity was 56%, 24%, and 21%, respectively. This corresponded to the women 

in general where the prevalence of normal weight, overweight and obesity was 59%, 23%, and 

15%, respectively. The FitMum population consisted of a larger number of women who never 

smoked (71%) compared to 61% of 25-34-year-old women in general. We also observed lower 

alcohol consumption before pregnancy in our study population with 41%, 58% and 1% of our 

participants consuming 0, 1-7, and 8-14 servings per week, respectively, compared to 19%, 51%, 

and 10% in the background population. Thus, compared to 25-34-year-old Danish women in 

general, our study population seems similar with regards to weight status but healthier with regards 

to alcohol and smoking behaviors. 
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Sample size 

The sample size required to detect an overall significant difference with a power of 80% and 

significance level of 5% was calculated for the primary outcome of the study; MVPA from 

randomization to GA 28+0-6 weeks. We choose to randomize the participants in a 1:2:2 ratio to 

CON, EXE, or MOT as this required the lowest number of participants and left the participants, 

who we assumed were motivated for PA and hence more interested in being randomized to one of 

the intervention groups, with a greater chance of being randomized to EXE or MOT. Sample size 

calculation and planned statistical analyses were described in the statistical analysis plan 

(clinicaltrials.gov, #NCT03679130). The sample size calculation is associated with a high degree 

of uncertainty because we used a novel commercial activity tracker (Garmin Vivosport)132 to 

objectively measure the primary outcome. Thus, no obvious literature was available regarding 

which effect size and standard deviation (SD) to expect on PA measured by that specific tool. 

Therefore, we stipulated average weekly PA to be 60, 210 and 150 min per week in CON, EXE and 

MOT, respectively, and estimated SD based on a similar exercise intervention study in pregnant 

women that measured PA with accelerometers and had a SD of 116 min per week133. 

As shown in the flow diagram (Figure 1, Paper 2), the relative proportion of participants lost to 

follow-up until visit 2 (primary outcome measurement timepoint) was 15%, which is below 20% 

as estimated for the sample size calculation. Hence, the number of completers at visit 2 was 35, 77 

and 74 in CON, EXE, and MOT, respectively, meaning that sufficient power for the primary 

outcome analysis should be reached if effect sizes and SD’s in CON, EXE and MOT corresponded 

to the estimates from our sample size calculation.    

The number of participants to be included in the study was decided based on the sample size 

calculation for the primary outcome. Therefore, it was unknown whether the power to detect effect 

sizes of relevance for secondary and additional outcomes (i.e. outcomes in Paper 2 and 3) in the 

study was sufficient. However, as described in the statistical analysis plan, a sample size 

calculation for the secondary outcome, GWG (measured at delivery), was performed after 

initiation of inclusion of participants in the study but before the interventions were completed. The 

sample size of participants needed to detect a significant difference in GWG at delivery between 

CON and the intervention groups was 33 women in CON and 66 women in each of the two 

intervention groups. At delivery, we had 34, 74 and 70 completers in CON, EXE, and MOT, 

respectively, meaning that sufficient power for the secondary outcome analysis should be reached 

if effect sizes and SD’s in CON, EXE and MOT corresponded to the estimates from our sample 

size calculation. 
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Adherence and physical activity level 

Since the primary objective of the study was to investigate the effects of structured supervised 

exercise training versus motivational counselling on MVPA from randomization to GA 28+0-6 

weeks, no lower limit of adherence to our interventions was defined for participants to be included 

in the data analysis. From randomization to GA 28+0-6, average weekly MVPA was 32.7 min 

[95% confidence interval, 18.1;47.3] in CON, 49.7 min [39.2;60.2] in EXE and 40.2 min 

[29.7;50.7] in MOT (unpublished data). The average weekly MVPA from randomization to GA 

28+0-6 was higher in EXE compared to CON, but did not differ between EXE and MOT or 

between MOT and CON (unpublished data), despite having more completers at GA 28+0-6 than 

needed to detect statistical difference between these groups according to our sample size 

calculation. SD’s were within the estimated SD in our sample size calculation but the effect sizes 

on average weekly MVPA were lower in all three groups compared to the stipulated effect sizes 

in our sample size calculation.  

From randomization to delivery, average weekly MVPA was 35.4 min [19.4;51.4] in CON, 53.5 

min [42.0;65.0] in EXE and 43.1 min [31.6;54.6] in MOT (unpublished data) and hence still below 

one hour per week, which is markedly lower than the recommended level of PA during 

pregnancy1,4. Participants were stratified into five MVPA categories based on their average min 

of MVPA per week measured by the activity tracker from randomization to delivery to analyze if 

number of participants achieving MVPA below 30, 30-60, 60-150, 150-210, or above 210 min per 

week differed between the three groups (Table 1). Noteworthy, in both EXE and MOT less than 

10% of participants achieved the international and Danish recommendations of 150 min per week1 

and 210 min per week4, respectively. Differences in number and proportion of participants with 

MVPA below 30, 30-60, or 60-150 min per week were tested using Pearson's Chi-squared tests 

and showed no between-group differences. Due to low number of events (below 5) Fisher's Exact 

tests were performed to test differences in number and proportion of participants with MVPA 

between 150-210 min per week or above 210 min per week. Likewise, these tests showed no 

differences between the three groups in number of participants achieving MVPA 150-210 or above 

210 min per week. 
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Table 1. Number and proportion of participants with average MVPA below 30 min per week, 30-

60 min per week, 60-150 min/week, 150-210 min per week, and above 210 min per week from 

randomization to delivery  

 CON (n=45) EXE (n=87) MOT (n=87) p-value 

MVPA < 30 min/week, n (%) 26 (58%) 38 (44%) 48 (55%) 0.192 

MVPA 30-60 min/week, n (%) 13 (29%) 23 (26%) 22 (25%) 0.906 

MVPA 60-150 min/week, n (%) 5 (11%) 20 (23%) 13 (15%) 0.174 

MVPA 150-210 min/week, n (%) 0 (0%) 3 (3%) 2 (2%) 0.636 

MVPA > 210 min/week, n (%) 1 (2%) 3 (3%) 2 (2%) 1.000 

 

Manual registration of training sessions in EXE revealed that participants on average participated 

in 1.3 [1.1;1.5] out of three sessions offered per week from randomization to delivery. 40% of 

women in EXE participated in <1 session per week on average, 32% participated in 1-1.9 sessions 

per week, and 28% participated in 2-3 sessions per week. Women in MOT participated in on 

average 5.2 [4.7;5.7] out of seven (four individual and three group) counselling sessions offered 

during pregnancy (unpublished data). Thus, average adherence rates were moderate in MOT (with 

participants attending on average five out of seven counselling sessions) and among 60% of the 

participants in EXE (attending 1-3 sessions per week). The rather poor average adherence in our 

study and low PA levels measured by the tracker might have influenced the effects of our 

interventions on secondary and additional outcomes of the study. For example, it seems important 

to achieve a certain amount of PA to obtain beneficial effects on maternal and offspring health 

outcomes. The rather low PA level in our study is somewhat similar to the literature showing 

mixed effects of interventions to increase PA during pregnancy133–135. In a systematic review of 

systematic reviews, Heslehurst et al. concluded that PA interventions can increase metabolic 

equivalents (METs) and amount of oxygen used during maximal exercise, but the interventions 

did not seem to impact MVPA or steps during pregnancy134. However, some exercise intervention 

studies during pregnancy have shown relatively high adherence and PA levels129,136–138. An overall 

moderate effect of interventions on PA level among non-pregnant healthy adults has been found 
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in a review of diverse intervention studies designed to increase PA level (also including supervised 

exercise and motivational interviewing characteristics)139. Besides analyzing our data according 

to the randomized design in FitMum, we performed additional analyses to investigate if prenatal 

exercise per se independently of study group allocation was related to maternal and offspring 

health. We used a linear regression analysis to investigate associations between PA measures from 

the activity tracker (i.e. MVPA and active kilocalories) and secondary as well as additional 

maternal and offspring health outcomes (Paper 2 and 3).  

A limitation of using a commercial wearable activity tracker to measure the primary outcome 

across all three groups is that we do not know to what extend the participants in CON interacted 

with the tracker and that participants in CON may have increased their PA level due to motivation 

from wearing the tracker. Studies have indicated that consumer-based wearable activity trackers 

can increase MVPA, number of steps, and energy expenditure among adults140. Whether the 

accumulated PA during pregnancy in CON would have been lower if not wearing an activity 

tracker is unknown since we did not include an additional control group not wearing activity 

tracker in our study. A control group without tracker would likely be more representative for the 

large amount of the pregnant population not engaged in wearing an activity tracker. The 

differences in MVPA between a control group without tracker and EXE or MOT would probably 

have been larger than what we found by comparing MVPA in EXE and MOT to the current tracker-

wearing control group. Another limitation of using the Garmin Vivosport tracker for PA 

measurements in our study is that we do not know its validity. A review of the validity of other 

Garmin activity trackers indicated higher validity for steps but lower validity for heart rate and 

energy expenditure141. Other reviews and meta-analyses comparing the validity of Garmin activity 

trackers with other commercial wearable devices show inconsistent results142–144. Moreover, the 

activity tracker might not capture all PA. For example, only PA with a MET value of three or 

higher for bouts of at least ten consecutive minutes are reported as MVPA132. This may partly 

explain the relatively low MVPA in CON, EXE, and MOT in our study.  

Influence of the COVID-19 pandemic 

Lock-down periods because of the COVID-19 pandemic started on March 11th, 2020 (in Denmark) 

when the FitMum study had included participants for 17 months and was about halfway through. 

As described in the paper, intervention elements and test visits were during the lock-down period 

carried out online and we continued to include participants in the study. However, this means that 

the participants received different versions of the study. Either they 1) received exclusively 

physical interventions/test visits if they were included and gave birth before the occurrence of 
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COVID-19, 2) received a mix of physical and online study if they were included before, but gave 

birth during COVID-19, or 3) received exclusively the online version of the study if they were 

included after March 11th 2020. A sensitivity analysis of MVPA before versus during COVID-19 

was performed including only participants exposed to version 1 and 3 of the study to investigate 

if the conversion to online interventions influenced MVPA. This analysis showed that MVPA did 

not differ during COVID-19 versus before COVID-19 in any of the three groups (unpublished 

data). Interestingly, sensitivity analyses of the influence of COVID-19 on the secondary outcome 

of the study showed higher total GWG in MOT among participants receiving online interventions 

compared to MOT participants receiving physical interventions. Total GWG did not differ in EXE 

or CON during COVID-19 versus before COVID-19 (Paper 2). The higher total GWG among 

MOT participants receiving online intervention could not be explained by differences in MVPA 

before versus during COVID-19, since MVPA did not differ with intervention mode. Other 

measures of PA from the activity tracker including PA at vigorous intensity and active minutes 

(everything beyond sedentary time) did not differ before versus during COVID-19 in any of the 

three study groups either (p>0.05). We have no other obvious explanations for this finding, but it 

might be important to keep in mind when analyzing additional outcomes of the study that there 

may be non-PA related differences within the groups between participants receiving online versus 

physical interventions.  

Intensity in physical activity interventions 

PA is defined as any bodily movement generated by skeletal muscles that results in increased 

energy expenditure145. Exercise is additionally defined as structured, planned, repetitive bodily 

movement with a purpose of improvement or maintenance of physical fitness145. The two 

interventions that we tested in FitMum, structured supervised exercise training versus motivational 

counselling on PA, constitute two different approaches to implement and maintain a physically 

active lifestyle. With both exercise approaches we aimed to accommodate motivators for PA such 

as ‘advice and feedback from experts’ and ‘introduction to types of PA that are feasible to 

implement’ and overcome barriers such as ‘anxiety of overdoing exercise or exercising in an 

incorrect way’ and increase the participants confidence with doing exercise. The rationale for 

choosing structured supervised exercise training as one of the intervention approaches was to test 

the effects of committing to exercise training at fixed time points with fixed type, duration and 

frequency of exercise sessions, carried out in a social environment together with other pregnant 

women, and being supervised by health professionals. The rationale for having motivational 

counselling on PA as the other intervention was to offer a more flexible approach for 
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implementation of PA with regards to type, duration and frequency of PA sessions to allow for 

more individualized PA programs, but still being followed closely with regular counselling and 

exercise action plans from health professionals. PA at moderate intensity was prescribed in both 

interventions in FitMum according to the current recommendations from the Danish Health 

Authorities4.   

Moholdt and Hawley have recently suggested exercise training at vigorous intensity, also called 

high-intensity training (HIT), to be a time-efficient intervention prior to and throughout 

pregnancy146. Prenatal exercise at vigorous intensity has been indicated to be safe for healthy low-

risk pregnant women and their fetuses123. In fact, including elements of vigorous intensity exercise 

has also been associated with a markedly reduced incidence of GDM among overweight and obese 

women129, and higher enjoyment of exercise147, suggesting that HIT may have potential to increase 

exercise adherence among pregnant women. Currently, Danish pregnant women are advised 

against exercising at vigorous intensity during pregnancy if they were not used to exercise at 

vigorous intensity before pregnancy. However, pregnant women who normally exercise at 

vigorous intensity can continue their PA habits during pregnancy, but are advised against long-

distance running and similar exhausting activities4. Likewise, WHO and the American College of 

Obstetricians and Gynecologists support that women who habitually engaged in PA at vigorous 

intensity prior to pregnancy can continue these activities during pregnancy1,2. Interestingly, 

pregnant women in Australia are now recommended to meet the general PA guidelines for adults, 

including vigorous intensity exercise148. 

Given that ’lack of time’ is a barrier for PA often reported by pregnant women149–151, it seems 

essential to investigate in future studies whether HIT can constitute a time-efficient beneficial 

exercise regime with high adherence prior to conception and during pregnancy.  

Timing of intervention  

The FitMum study was developed to intervene during pregnancy with the rationale of pregnancy 

possibly being a window of opportunity to implement a more physically active lifestyle. The study 

participants were enrolled as early in pregnancy as possible and maximum at GA 15 weeks and 0 

days (GA 15+0 weeks). The inclusion period ended up ranging from GA 6+1 – 15+0 weeks and 

the median GA at inclusion was 12.9 (interquartile range, 9.4-13.9) weeks. Inclusion in early 

pregnancy has also been practiced in other exercise intervention studies in pregnant 

women128,129,152–154. Succeeding with implementation of lifestyle behavior changes can take long 

time and thus, it seems important to initiate interventions as early in pregnancy as possible to allow 

the intervention to last as long time as possible155. Moreover, initiation of PA prior to or in early 
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pregnancy might result in better results than starting later in pregnancy. A meta-analysis evaluating 

prepregnancy and early pregnancy PA reported a lower risk of developing GDM for women in the 

highest PA quantiles compared to women in the lowest PA quantiles156. Furthermore, optimized 

growth of placenta and fetus has been indicated with prenatal exercise initiated after only eight or 

nine weeks of gestation157. In fact, Moholdt and Hawley have proposed initiation of maternal 

lifestyle interventions already in the preconception period in the attempt of reducing obesity, which 

is present in about one-third of women in the reproductive age146. Higher prepregnancy PA level 

has been suggested as a predictor of higher PA level during pregnancy by several studies158,159, 

which supports the proposal of establishing good exercise habits already prior to conception. Thus, 

further research focusing on the effects of initiating maternal lifestyle interventions 

preconceptionally on maternal PA and maternal and offspring health outcomes seems to be 

important. 
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PAPER 2: THE EFFECTS OF PRENATAL PHYSICAL 

ACTIVITY INTERVENTIONS ON GESTATIONAL WEIGHT GAIN 

AND OBSTETRIC AND NEONATAL OUTCOMES 

The aim of Paper 2 was to investigate the effects of EXE versus MOT on GWG and obstetric and 

neonatal outcomes compared to CON. Further, we aimed to investigate if effects of prenatal 

exercise on GWG depended on prepregnancy BMI. We developed a novel method to estimate 

GWG at specific time points during pregnancy and to account for missing weight measurements 

and individual differences in GA at delivery. The estimation of GWG by this method was based 

on longitudinally observed body weights during pregnancy and at admission for delivery, which 

were fitted to a mixed effects model to predict maternal body weight and estimate GWG at 

different gestational ages. Obstetric and neonatal outcomes were obtained from medical records 

after delivery. Obstetric outcomes included incidence of GDM, gestational hypertensive disorders 

(including preeclampsia), induction of labor, use of epidural analgesia, oxytocin augmentation, 

duration of labor, mode of delivery, rupture degree 3 and 4, and postpartum hemorrhage. Neonatal 

outcomes included GA at delivery, preterm delivery, BW, birth length, birth weight z-score, SGA, 

LGA, and Apgar score at 5 min. 

Overall, neither EXE nor MOT affected GWG or obstetric and neonatal outcomes compared to 

CON. However, women with obesity in both EXE and MOT gained less weight compared to 

women with normal weight within the same intervention groups. Further, associations between 

PA measures and GWG differed between women with obesity and normal weight. This indicates 

that pregnant women with obesity may be more susceptible to the beneficial effects of prenatal PA 

on GWG compared to women with normal weight.  

 

Methodological considerations  

Calculation of gestational weight gain by a novel method 

In their reexamination of guidelines for weight gain during pregnancy in 2009, the Institute of 

Medicine presented ideal and practical methods for measurement and acquisition of body weight 

data required to determine GWG. Ideally, body weights used to calculate GWG should be 

prepregnancy weight measured at a preconceptional visit and the last measured available weight 

abstracted from clinical records. If not possible to measure maternal weight before conception and 

late in pregnancy (ideally at delivery) in practice, prepregnancy weight and last available weight 

can be recalled (self-reported) by the women as soon as possible, for example at the first prenatal 

visit, using standardized questions32. However, such data will most likely be less precise than 
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objectively measured weights during hospital visits. For practical reasons, most studies use weight 

measured at the last pregnancy visit to calculate GWG41,42,160 and only few studies have measured 

weight at delivery and hence reported GWG for the entire pregnancy period161,162. In Paper 2, we 

aimed to estimate GWG for the entire pregnancy period and account for missing weight 

measurements and individual differences in GA at delivery. Thus, we obtained self-reported 

prepregnancy weight at visit 1, and measured the participants body weights at the hospital at visit 

2, 3, and at delivery using two different, but calibrated, electronic scales. All these observed 

weights (self-reported and measured) were fitted to a mixed effects model to predict body weights 

at specific timepoints throughout pregnancy at the participant-level. The GWG at GA 40+0 weeks 

was subsequently estimated as the difference between the predicted weight at GA 40+0 weeks and 

predicted prepregnancy weight (predicted weight at GA 0 weeks). Using this model, we showed a 

good relationship between observed weights and predicted weights for all individuals in all three 

groups, and a complete-case analysis including only participants with weight measurements at 

delivery (n=131) showed similar results of GWG as the results of estimated GWG by the model 

(Paper 2). Thus, this novel method can be used to precisely estimate GWG at specific timepoints 

throughout pregnancy, for example GWG for the entire pregnancy period. Further, this method 

allowed us to take GA into account, which can vary up to five weeks within term-deliveries and 

thus likely influence GWG markedly. Moreover, missing data could be predicted by the model 

allowing us to report mean GWG at GA 40+0 weeks for all 219 study participants even though we 

only obtained weight data on 131 women at delivery.  

 

Body weight measured on different scales  

During COVID-19 lockdown periods, participants could not attend study visits at the hospital and 

were therefore weighed on a private scale at home. We performed a sensitivity analysis to 

investigate if weight measurements being obtained by the calibrated scale at the hospital versus on 

the participants’ own scales at home influenced the GWG results. In this sensitivity analysis we 

included only participants, whose weight was exclusively measured at the hospital (n=167) and 

excluded participants who had at least one weight measurement obtained at home (n=52). The 

sensitivity analysis showed similar results of GWG at GA 40+0 weeks as the intention-to-treat 

analysis including all 219 participants independent of scale used to obtain weight data (Paper 2). 
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Weight gain rates during pregnancy 

Weight gain rates during pregnancy were investigated as part of modelling the trajectories of 

observed body weights during pregnancy by the mixed effects model. Figure 5A shows the weight 

gain rates during pregnancy in the three groups and shows that the rates of the weight gain change 

at one point in all three groups. The weight gain rates change at GA 71 days [51;94] in MOT, at 

GA 93 days [76;105] in EXE, and at GA 107 days [77;132] in CON (Figure 5B). The probability 

that the weight gain rate changed earlier in MOT compared to CON was 97%. The probability that 

the weight gain rate changed earlier in EXE compared to CON was 81%, and the probability of an 

earlier weight gain rate change in MOT compared to EXE was 94%. This means that participants 

in both MOT and EXE will likely begin to gain weight at a higher rate before participants in CON 

and further, that participants in MOT will begin to gain weight at a higher rate before participants 

in EXE, given that the weight gain rate was lower in the beginning of pregnancy (Figure 5C) 

compared to later in pregnancy (Figure 5D). However, the weight gain rate change-points in MOT 

and EXE were earlier than median GA at randomization, which was at GA 97 and 95 days, 

respectively. In CON, the change-point was only 10 days after median randomization time at GA 

97 days. This means that the different change-points in the three groups were likely independent 

of group allocation in the study. 
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Figure 5. Average weight gain rates during pregnancy in CON (n=45), MOT (n=87), and EXE (n=87) (A), gestational 

age change-point for weight gain rate in the three groups (B), weight gain per day in CON, MOT and EXE before the 

change-point (C) and after the change-point (D). CON; Control, MOT; Motivational counselling on physical activity, 

EXE; Structured supervised exercise training, GA; Gestational age. 
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Influence of prepregnancy body weight on gestational weight gain trajectory 

Lastly, we investigated if the predicted slope 1 and 2 in CON, EXE and MOT in the model were 

associated with predicted weights at GA 0 weeks. As expected, we found a general tendency for 

smaller slopes with higher weights at GA 0 weeks, but no significant associations, meaning that 

estimated GWG for participants with higher prepregnancy BMI was not systematically lower due 

to higher weight at GA 0 weeks than estimated GWG for participants with lower prepregnancy 

BMI. If slopes were significantly associated with prepregnancy BMI, GWG would have to be 

adjusted for weight at GA 0 weeks to avoid systematic underestimation of GWG for women with 

obesity compared to women with lower prepregnancy BMI and subsequent overestimation of the 

difference in GWG between women with obesity and normal weight.   

 

Discussion of findings in Paper 2  

Sample size 

As described in the discussion of Paper 1 and in our statistical analysis plan, our sample size 

calculation for GWG showed that 33 participants in CON and 66 in each of the two intervention 

groups were needed to detect a significant difference in GWG at delivery between CON and the 

intervention groups. The sample size calculation was based on a comparable study by Haakstad et 

al. with exercise training in pregnant women163. This study showed a difference in GWG of 2.8 kg 

between exercise and control groups, when including only participants in the exercise group who 

attended 24 sessions (twice per week), and SD’s were 4 kg. Despite that we had 34, 74 and 70 

completers at delivery in CON, EXE, and MOT, respectively, we did not find any differences in 

total GWG (estimated GWG at GA 40+0 weeks) between groups. This is likely due to lower effect 

sizes on GWG with less than 1 kg difference between the three groups, as well as higher SD of up 

to 6.4 kg (unpublished data), compared to the study by Haakstad et al. Further, the GWG difference 

of 2.8 kg between exercise and control groups in the study by Haakstad et al. were present when 

analyzing participants in the exercise group who participated twice per week. The exercise 

intervention in the study by Haakstad et al. consisted of supervised aerobic exercise training for 

one hour at least twice a week for 12 weeks during pregnancy and is comparable to the EXE 

intervention in our study. However, the average adherence of 1.3 sessions/week [1.1;1.5] in EXE 

in our study, is markedly lower than the attendance rate of 2 sessions/week in the study by 

Haakstad et al. Altogether, these factors probably explain why EXE and MOT did not have lower 

GWG compared to CON, even though we fulfilled the included number of participants needed to 

detect a significant difference according to our sample size calculation. 
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Physical activity level and influence on gestational weight gain and obstetric and neonatal 

outcomes  

As mentioned in the discussion of Paper 1, the average MVPA measured by the activity tracker 

was below one hour in both EXE, MOT and CON, and the low PA level and rather poor average 

adherence might have influenced the effects of our interventions on GWG and obstetric and 

neonatal outcomes. Additionally, we performed a linear regression analysis to investigate if 

prenatal PA per se independent of study group allocation was associated with GWG and obstetric 

and neonatal outcomes. As shown in Figure S.3A-C in Paper 2 no associations were found between 

MVPA, steps or active kilocalories and total GWG.  

Associations between MVPA, steps, active kilocalories and obstetric and neonatal outcomes were 

also investigated using linear and logistic regression for continuous and categorical outcomes, 

respectively (unpublished data). Most of these analyses included the 178 participants who were 

still enrolled in the study when they delivered. PA data used for regression analyses were average 

values from randomization to delivery day independent of GA at randomization and delivery, and 

missing PA data were imputed. For analyses of pregnancy complications, all 219 randomized 

participants were included, and PA data were average values from randomization to GA 40+0 

weeks for the 41 participants who were lost to follow-up before delivery. Overall, no associations 

were found between any of the PA measures and obstetric pregnancy complications or delivery 

related outcomes, as well as neonatal outcomes. 

To investigate the effects of obtaining higher amounts of tracker-measured MVPA in the 

intervention groups, per protocol analyses were made comparing total GWG for all women in 

CON independent of MVPA level with total GWG for EXE and MOT participants with average 

MVPA of 60-150 min per week, 150-210 min per week, above 210 min per week, and above 60 

min per week. Similar to PA data used for associations between PA measures and total GWG at 

GA 40+0 weeks in Paper 2, PA data used for per protocol analyses had imputations for missing 

data and average values from randomization to delivery day for participants who delivered ≤GA 

40+0 weeks, and from randomization to GA 40+0 weeks for participants who delivered >GA 40+0 

weeks or were lost to follow-up before delivery. One-way ANOVAs were used to investigate 

differences between groups in total GWG for the different average MVPA levels. Compared to 

CON, EXE and MOT did not affect total GWG when including EXE and MOT participants having 

average MVPA of 60-150 min per week (p=0.848), 150-210 min per week (p=0.221), above 210 

min per week (p=0.234), and above 60 min per week (p=0.853) (Figure 3).  
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Figure 3. Total gestational weight gain for all CON participants independent of MVPA level (n=45) versus EXE and 

MOT participants with average MVPA of 60-150 min/week (EXE: n=20, MOT: n=13), 150-210 min/week (EXE: 

n=3, MOT: n=2), above 210 min/week (EXE: n=3, MOT: n=2), and above 60 min/week (EXE: n=26, MOT: n=17) 

from randomization to max. GA 40+0 weeks. Data are means and dots represent individual data points. CON; Control, 

EXE; Structured supervised exercise training, MOT; Motivational counselling on physical activity, MVPA; Moderate 

to vigorous intensity physical activity. 

 

These analyses indicate that obtaining higher amounts of MVPA in EXE and MOT does not reduce 

total GWG compared to CON. However, very few participants had MVPA above 150 min per 

week and hence, low power constitute a challenge for the statistical per protocol analyses. 

Additional analyses were performed combining GWG data from EXE and MOT participants in 

one PA intervention group, in the attempt to increase power in EXE and MOT. Two-sample t-test 

analyses between all CON participants versus EXE and MOT participants combined showed no 
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differences in total GWG for neither EXE and MOT participants having an average MVPA of 60-

150 min per week (p= 0.617), 150-210 min per week (p= 0.316), above 210 min per week (p= 

0.743), or above 60 min per week (p= 0.847), similar to the results of the previous analyses. 

Moreover, a per protocol analysis was performed based on manually registered adherence to the 

intervention in EXE to compare total GWG for all women in CON with total GWG for EXE 

participants who attended on average 2-3 exercise sessions per week from randomization to 

delivery. Two-sample t-test showed no difference in total GWG between CON and EXE 

participants who attended on average 2-3 exercise sessions per week (p= 0.374) (Figure 4). Thus, 

relatively high adherence to the EXE intervention did not reduce total GWG compared to CON.  

 

C
O
N

E
X
E

0

10

20

30

G
e

s
ta

ti
o

n
a

l 
w

e
ig

h
t 

g
a

in
 (

k
g

)

 
Figure 4. Total gestational weight gain for all CON participants (n=45) versus EXE participants who attended on 

average 2-3 exercise sessions per week from randomization to delivery (n=24). Data are means and dots represent 

individual data points. CON; Control, EXE; Structured supervised exercise training. 
 

Altogether, tracker-measured PA was not associated with total GWG, obstetric or neonatal 

outcomes. Further, higher amounts of average weekly tracker measured MVPA in EXE and MOT 

did not reduce total GWG compared to CON. Likewise, attending on average 2-3 exercise sessions 

per week in EXE did not influence total GWG compared to CON. These findings are in contrast 

with the recent systematic reviews and meta-analyses of studies with exercise interventions during 



Thesis, page 44 

pregnancy. Overall, they report reduced GWG with effect sizes of 1-2 kg with prenatal exercise 

interventions compared to control in both normal weight and overweight/obese women41–43, and a 

32% reduced risk of excessive GWG41. The methodology and quality of the studies in the meta-

analyses vary, which likely influences the results, and risk for publication bias needs to be 

considered. However, all three meta-analyses assessed publication bias via funnel plots and found 

no evidence of publication bias41–43. Exercise characteristics including frequency, intensity, 

duration, and type of exercise for optimization of GWG were also reported in these meta-analyses. 

Wang et al. indicated that the most beneficial effect of prenatal exercise interventions on reducing 

GWG appeared to be when women exercised three times per week for 30-60 min each time43. 

Similarly, Ruchat et al. reported that to achieve at least 25% reduction in risk of excessive GWG, 

the pregnant women had to exercise at least two times per week for 35 min each time or accumulate 

at least 456 MET-min per week of moderate intensity exercise corresponding to exercising at 

moderate intensity for around 105 min per week41. In the meta-analysis by Diaz-Burrueco et al. 

that also found a protective effect of prenatal exercise on GWG, they reviewed various types of 

PA during pregnancy and reported a mean duration of 51.3 min per PA session and a frequency of 

three times per week42. Further, they reported that supervised exercise sessions including aerobic, 

strengthening, and stretching guided exercises, as well as cycling sessions were effective on 

reducing GWG.  

Thus, it seems necessary to accumulate a certain amount of exercise during pregnancy of at least 

two weekly exercise sessions and minimum 100 min per week to achieve beneficial effects on 

GWG. This is more than the PA level obtained in our study with average weekly MVPA of 53.5 

min [42.0;65.0] in EXE and 43.1 min [31.6;54.6] in MOT, and in average attendance in 1.3 

[1.1;1.5] sessions per week in EXE from randomization to delivery, which may constitute a 

possible explanation for the lack of effect of EXE and MOT on total GWG and obstetric and 

neonatal outcomes. We experienced a moderate to high adherence to the MOT intervention with 

participants attending on average 5.2 [4.7;5.7] out of 7 counselling sessions during pregnancy, but 

this was not reflected in the MVPA level and GWG. In contrast, Haby et al. showed decreased 

GWG and a higher amount of women with GWG below 7 kg among obese pregnant women with 

higher adherence to a motivational counselling intervention on diet and PA compared to obese 

control women164.  

Other possible explanations for the lack of difference in total GWG and obstetric and neonatal 

outcomes in EXE and MOT compared to CON might include the health status of CON, health 

status of our overall study population, and that we intervened on exercise only.  

The participants in CON were likely relatively healthy, for example being normal weight on 
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average and overall non-smoking, which minimizes differences between CON and the intervention 

groups. Further, as previously mentioned in the discussion of Paper 1 we do not know whether 

participants in CON increased PA during the study period due to motivation from wearing the 

tracker.  

However, reduced GWG after prenatal exercise interventions compared to controls has both been 

found in studies including women with overweight/obesity129,165 and normal weight136,137,154.  

Regarding health status of our overall study population, the prevalence of overweight or obesity24 

and the level of insufficient PA5 are lower among Danish women in general compared to women 

in other western countries such as the United States and the United Kingdom. This might reduce 

the potential for exercise to induce beneficial health effects on GWG and obstetric and neonatal 

outcomes in our study population compared to pregnant populations in other countries with a 

higher overweight and obesity burden among pregnant women, for example the United States25. 

Thus, intervention effects of EXE and MOT on reduced GWG and improved obstetric and neonatal 

outcomes would probably have been more evident among populations with overweight or obesity. 

In fact, stratification of our study participants into subgroups based on their prepregnancy BMI 

indicated that women with obesity in EXE and MOT gained less weight than participants with 

normal weight in EXE and MOT, respectively (Paper 2). These findings indicate that women with 

obesity may be more susceptible to beneficial effects of prenatal exercise, but we could not confirm 

an intervention effect of EXE or MOT compared to CON in the subgroup of obese women.  

Further, we speculated whether the average GWG in FitMum was lower compared to other studies 

since a potentially lower average GWG in FitMum could reduce the potential for EXE and MOT 

to reduce GWG, and constitute a possible explanation for the lack of effect of EXE and MOT on 

GWG. However, the total GWG (GWG at GA at 40+0 weeks) in FitMum was 14.9 kg [13.6;16.1] 

in CON, 15.7 kg [14.7;16.7] in EXE and 15.0 kg [13.6;16.4] in MOT, whereas differences in GWG 

between intervention and control groups have been found in other studies that report lower average 

GWG of only 8-12 kg in the exercise intervention groups and 10-13 kg in the control 

groups129,136,137,154. Thus, average GWG in FitMum was higher compared to other studies reporting 

reduced GWG after exercise, so a reduced potential for reduction in GWG in FitMum could not 

explain the lack of intervention effects on GWG in our study.   

Focusing on the effects of intervening on PA only versus on multiple lifestyle components, a three-

armed randomized controlled study by Renault et al. included Danish pregnant women with 

obesity and compared a PA plus dietary intervention, a PA intervention only, and a control group. 

The authors found reduced GWG in both intervention groups compared to control but no 

difference in GWG between the two intervention groups153. Other reviews and studies have shown 



Thesis, page 46 

that it might be more effective for reduction of GWG and improvement of obstetric and neonatal 

outcomes to intervene on both diet and PA40,44,128, in contrast to our interventions that focused on 

PA only.  

Maternal and infant body composition 

Measuring maternal body weight and GWG reflect changes in several maternal and fetal 

components such as fat mass, fat-free mass, total body water and placenta32. However, total weight 

measurements do not reveal the contribution from each component and hence, adding 

measurements of maternal body composition during pregnancy seems important to gain a more 

detailed understanding of alterations in metabolic health profile. Several studies in non-pregnant 

populations have shown exercise-induced beneficial changes in body composition with increased 

fat free mass57,166 and reduced fat mass57,58,166,167 after exercise. Computed tomography and 

magnetic resonance imaging (MRI) are nowadays recognized as gold standard methods for 

measurements of body composition168. DXA scan is considered gold standard for measurement of 

bone mineral density but can also estimate total and regional fat and lean mass and show similar 

accuracy with MRI168. Computed tomography and DXA methodologies are not recommended 

during pregnancy due to ionizing radiation exposure169. In contrast, MRI is considered safe for the 

pregnant woman and fetus and is therefore the only method available for in vivo measurements of 

masses and distributions of fat, skeletal muscle, and organ tissue169. However, MRI has several 

limitations including expensive costs, technician expertise needed, and being unsuitable for field-

based settings169. Thus, investigation of body composition during pregnancy are most of the time 

limited to use of less robust methods such as air displacement plethysmography, anthropometric 

measurements such as skinfold thicknesses and upper arm circumferences to estimate fat mass, 

and estimation of body composition based on total body water measured by DLW169. Furthermore, 

challenges of measuring body composition during pregnancy include that the methods available 

cannot distinguish between maternal and fetal depots, and that pregnancy-induced body 

composition changes, for example increase in total body water, can violate assumptions inherent 

in many of the currently available methods that do not have pregnancy specific corrections169.   

Body composition in response to exercise among pregnant women are seldomly reported, probably 

due to complicated and costly methods compared to measuring body weight, which is an easy 

measure routinely obtained as part of prenatal care. Ferrari et al. measured fat mass using 

anthropometry in humans at GA 36 weeks and reported lower fat mass among exercising pregnant 

women compared to controls75. On the other hand, Cavalcante et al. showed no differences 

between a prenatal water aerobics exercise group and a control group in estimated body fat mass 
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and fat-free mass based on skinfold thicknesses measured three times during pregnancy170.    

In Paper 2, we only report data on GWG. However, in FitMum we have also investigated maternal 

body composition during pregnancy using DLW, and 7-14 days after delivery using DXA scan. 

These data are planned to be reported in a future paper and will add important information to data 

in the current paper regarding GWG. The lack of difference in GWG between groups could be due 

to an increase in lean mass and decrease in fat mass in EXE and MOT compared to CON that were 

not reflected in the GWG but would be a metabolically healthier weight gain.  

Regarding infant anthropometry, we report infant weight and length measured at birth in Paper 2.  

For the same reasons as described above, it seems important to investigate infant body 

composition. Several studies have estimated infant body composition using skinfold thicknesses 

and found reduced fat mass in early infancy after maternal prenatal exercise77–79. Studies using 

more advanced methods to measure infant body composition, including DXA and PEA POD (air 

displacement plethysmography), in early infancy also indicate maternal exercise to be associated 

with reduced offspring fat mass171 and increased lean mass80,81. In FitMum, we obtain data on 

infant body weight and length as well as head circumference several times during the first year of 

life, and we have recently been granted funding to perform follow-up measurements in the 

offspring at three years of age using DXA and a BOD POD body composition system (air 

displacement plethysmography).  
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PAPER 3: THE EFFECTS OF PRENATAL PHYSICAL 

ACTIVITY INTERVENTIONS ON THE HUMAN BREAST MILK 

METABOLOME AND LIPIDOME 

In Paper 3, we aimed to investigate the effects of EXE versus MOT on breast milk composition 

compared to CON. Breast milk samples were obtained from 99 participants from a single feed 7-

14 days after birth at the first feeding after 6:00 AM. Ultrahigh Performance Liquid 

Chromatography mass spectrometry untargeted metabolomics and lipidomics analyses were used 

to analyze the breast milk metabolome and lipidome. Overall, we found no major metabolite or 

lipid changes with EXE or MOT compared to CON, but our interventions changed some 

metabolites and lipids compared to CON, and metabolites and lipids correlated with PA measures. 

Thus, maternal prenatal PA may induce changes to the human breast milk metabolome and 

lipidome, which in part could explain improved offspring metabolic health. 

 

Methodological considerations  

Metabolomic and lipidomic profiling   

Use of metabolomic and lipidomic profiling techniques have been expanded during the past 

decade. Metabolomics is defined as the comprehensive analysis of the metabolome in a biological 

system, for example biofluid or tissue172. The metabolome is the entire collection of metabolites 

within a biological system. The metabolites include low molecular weight (<1500 Daltons) 

chemical substrates, intermediates or end products of enzyme-mediated reactions172. Lipidomics 

is a subfield of metabolomics and includes the study of the lipidome, for example total lipid 

content, within a given biological system172. Omics approaches are generally described as unbiased 

global analyses to identify the largest possible amount of compounds within a biological system172. 

However, different approaches including untargeted and targeted metabolomics and lipidomics 

analyses are available. In Paper 3 we used untargeted metabolomics/lipidomics analyses, which 

aim to detect as many metabolites/lipids as possible and provide the relative abundances, and not 

absolute concentrations, of metabolites/lipids172.  

 

Potentials and challenges of metabolomic and lipidomic profiling 

Untargeted metabolomics and lipidomics are considered hypothesis-generating approaches that 

provide tremendous potential for identification of previously unknown metabolic targets, which 

can be validated using the targeted omics approach172. This offers outstanding possibilities to 

expand and accelerate our understanding of mechanisms involved in exercise-induced changes of 
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complex biological systems, since metabolites lie downstream of all other biological regulations 

and therefore reflect changes that occur as a result of several processes involving the genome, 

transcriptome and proteome172. As mentioned in Paper 3, metabolic profiling provides a metabolic 

phenotype snapshot and allows for rapid indications of metabolic perturbations in response to 

exercise. Since metabolomic and lipidomic profiling is suitable for investigations in both 

preclinical and clinical settings, it can be used for drug discovery and development in the 

pharmaceutical industry as well173. Discovery of previously unknown metabolites and lipids 

possibly involved in optimization of offspring metabolic health may also provide possibilities for 

supplementation of these during lactation, as tested in mice by Harris et al.98, who suggest 

supplementation of 3’-SL as a potential therapeutic tool to prevent development of offspring 

obesity, T2D and cardiovascular disease later in life.   

Further, only small sample volumes of typically 10-100 ul are needed for analysis, which makes 

sample collection feasible, and metabolomic and lipidomic profiling analyses have been performed 

in several human and animal bodily fluids and tissues172. Biofluids, such as blood, urine, saliva 

and sweat, are far more used in exercise metabolomics and lipidomics studies in humans, but 

metabolomic/lipidomic profiling can also be performed in tissue biopsies from for example liver 

and skeletal muscle. In contrary, metabolomics and lipidomics studies in animal models have 

predominantly used tissues relative to biofluids172. Metabolomics and lipidomics analyses have 

also been performed in human breast milk100,174–177, but to my knowledge only one study has 

investigated effects of maternal exercise on human breast milk using metabolomics and lipidomics 

analyses100. Dried blood spots are also considered interesting with regards to advancement of 

metabolomics/lipidomics techniques. Dried blood spots are obtained with finger prick for adults 

and heel prick for infants and are therefore less invasive compared to blood sampling by 

venepuncture172. In Denmark, all newborn infants are offered a screening for a number of 

congenital diseases via a heel prick test performed 48-72 hours after birth178. Implementing 

metabolomics/lipidomics analyses of dried blood spots from these tests could offer a great 

possibility to gain insight into the metabolic profile in early infancy and investigate whether the 

metabolome or lipidome is associated with for example maternal GWG as well as diet and exercise 

during pregnancy. 

Metabolomic and lipidomic profiling data also have the potential to be used for predictions of 

diseases, based on specific metabolites or lipids known to be involved in specific diseases. In a 

recent study, Ooi et al. performed lipidomics analysis and indicated moderate to strong correlations 

between several lipids in liver and plasma in severe or morbidly obese patients undergoing 

bariatric surgery179. This suggests that the plasma lipidome can reflect pathological changes in the 
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liver and hence constitute a less invasive method than liver biopsies to predict liver disease179. If 

the breast milk metabolome/lipidome is also associated with for example liver 

metabolome/lipidome, utility of breast milk metabolites/lipids revealed by metabolo-

mics/lipidomics analysis could carry a potential to non-invasively investigate biomarkers of 

disease conditions in mother and maybe also indirectly in the child. Use of metabolite/lipid data 

for predictions can facilitate the development of personalized medicine, including personalized 

treatment strategies such as personalized training interventions. 

In untargeted analysis, data processing includes identification/annotation of detected 

metabolites/lipids via comparison to in-house libraries and available databases, for example the 

Human Metabolome Database. Identification of metabolites and lipids constitutes a main 

challenge of the untargeted metabolomic and lipidomic approaches172. In our study metabolomic 

and lipidomic analyses detected 219 annotated metabolites and 172 annotated lipids, respectively, 

and 21,434 and 14,278 non-annotated metabolite and lipid mass features, respectively (Paper 3). 

This is a normal output of untargeted metabolomic/lipidomic profiling analysis. Besides the need 

for expansion of libraries to allow for better identification of unknown metabolites and lipids, other 

challenges using metabolomic and lipidomic profiling analyses include large interstudy variation, 

meaning that comparison of findings between studies needs to be done cautiously172. Large 

variation between studies using metabolomics/lipidomics approaches may be partly caused by 

high interindividual variation in confounding factors such as nutritional status (fasted versus fed), 

fitness (trained versus untrained) and medication use, which seem important to report or control 

for172. If investigating effects of exercise training on the metabolome/lipidome it will most likely 

also be important to control for exercise prior to obtaining the sample. As described in Paper 3, a 

limitation of our study is that we did not control for these confounding factors. Further, differences 

in experimental factors including use of different analytical platforms and data acquisition modes 

also contribute to the large variation between studies. In our study we used the analytical platform 

liquid chromatography mass spectrometry for data acquisition, which is currently the most widely 

used metabolomic profiling technique172. 
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Discussion of findings in Paper 3 

Influence of physical activity level on human breast milk composition 

Overall, in Paper 3 we found no major differences in relative abundances of metabolites and lipids 

in EXE and MOT compared to CON. However, EXE and MOT seemed to slightly increase relative 

abundances of oxoglutarate and caffeine, respectively, and decrease fatty acid hydroxy fatty acids 

(FAHFA)(36:3) and some phospholipids. The average weekly MVPA from randomization to 

delivery was 36.5 min [26.5;46.6] in CON, 60.7 min [44.2;77.3] in EXE and 45.8 min [28.2;63.4] 

in MOT among the 99 participants included in the breast milk analyses (unpublished data). Thus, 

our findings of overall no major differences in metabolites and lipids between interventions and 

CON could be due to rather low MVPA in EXE and MOT. Comparing the MVPA level in our 

study with other studies is challenged by the sparse number of studies focusing on the influence 

of maternal exercise during pregnancy on breast milk composition98,105. Moreover, these studies 

do not provide measures of PA that are comparable with our study because they use animal models 

or report correlations between PA and human breast milk components. In our study we found 

positive correlations of some metabolites and several phospholipids with PA measures from the 

activity tracker, indicating that higher levels of PA increase the relative abundances of these 

metabolites and lipids. 

Previous studies have shown changes in 3’-SL and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-

diHOME) in human breast milk with prenatal and postpartum maternal exercise, respectively98,100, 

but none of these metabolites differed in EXE or MOT compared to CON. Again, this could be 

due to rather low MVPA in EXE and MOT. Moreover, correlograms, which were performed for a 

global overview of all correlations between metabolites/lipids and PA measures, GA at delivery, 

age, prepregnancy BMI, GWG, as well as maternal weight 7-14 days after delivery, showed no 

strong correlations between any of these measures and 3’-SL or 12,13-diHOME. 

Despite rather low weekly MVPA in EXE and MOT, we found some changed metabolites and 

lipids in EXE and MOT, for example caffeine and oxoglutarate. However, it is uncertain whether 

these changes were caused by lasting effects of the interventions or might be confounded by other 

factors, for example medication use in relation to the delivery, that possibly influence the 

dynamically changing metabolome and lipidome172 in the period between termination of 

interventions (at latest at delivery) and breast milk sampling 7-14 days postpartum. Mature breast 

milk cannot be pumped before around one week after delivery, so if the aim is to investigate effects 

of exercise training performed during pregnancy on mature breast milk composition, this 

intermediate period of several days cannot be avoided. Nevertheless, there might be long-lasting 



Thesis, page 52 

exercise-induced adaptations in the breast milk metabolome and lipidome after prenatal exercise 

training. As to my knowledge, only one study has investigated the effects of maternal exercise on 

the human breast milk metabolome and lipidome and this study focused on effects of maternal 

acute exercise in the postpartum lactating period100. Therefore, studies with the primary objective 

of investigating effects of prenatal exercise training on the human breast milk metabolome and 

lipidome are warranted. Such studies should perform sample size calculations and strictly control 

adherence to interventions to hopefully obtain high PA levels among participants during 

pregnancy. Further, confounding factors such as nutritional status prior to sampling should be 

controlled for, as seen in other studies investigating the effects of acute exercise on the human 

metabolome and lipidome100,180–182. In our study, the investigation of breast milk composition was 

exploratory and a secondary outcome and thus, no sample size calculation was performed for this 

outcome. We analyzed the data according to both the randomized controlled design to investigate 

differences in relative abundances of metabolites and lipids between the three groups, and by using 

an observational design to investigate if PA levels independent of study group allocation were 

associated with relative abundances of metabolites/lipids.  

Other factors can affect human breast milk composition 

The design of the current study (Paper 3) allowed us to investigate the influence of maternal 

prenatal PA on the human breast milk metabolome and lipidome in a real-life setting 7-14 days 

after delivery. However, we did not control for other factors such as maternal obesity, nutritional 

status, or medication use prior to obtaining the breast milk sample, that might influence breast milk 

composition and possibly blur potential effects of prenatal PA. A recent systematic review and 

meta-regression analysis including 66 studies indicated a positive association between maternal 

BMI and fat concentration in human breast milk 1-6 months postpartum183. De la Garza Puentes 

et al. investigated the influence of maternal prepregnancy BMI on fatty acid concentration in 

human colostrum and mature breast milk sampled 2-4 and 28-32 days postpartum, respectively184. 

Mothers with overweight and obesity had changes in several fatty acids in both colostrum and 

mature milk compared to mothers with normal weight184. Further, in a study by Brezinova et al. 

maternal obesity was indicated to decrease levels of FAHFA in human breast milk collected 72 

hours after delivery177. FAHFA is a lipid class that includes 5-palmitic acid ester of hydroxystearic 

acid (5-PAHSA), 9-PAHSA, and 13-DHAHLA and act as lipokines185. Lipokines are lipid 

compounds that are predominantly secreted from adipose tissue and can act as signaling molecules 

and influence systemic metabolism185,186. FAHFA was discovered in 2014 and has been indicated 

to confer anti-diabetic and anti-inflammatory effects since it correlates strongly with insulin 
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sensitivity, measured by gold standard euglycemic hyperinsulinemic clamp, and is reduced in 

serum and adipose tissue from insulin-resistant humans187. The study by Brezinova et al. showed 

lower total PAHSA level in milk from mothers with obesity compared to mothers with normal 

weight177. Moreover, other studies have found maternal obesity to be associated with changes in 

the human milk metabolome175,176. One study found that 10 and 20 breast milk metabolites differed 

between women with overweight/obesity compared to lean mothers at one and six months 

postpartum, respectively175. Another study assessed maternal adiposity by prepregnancy or early 

pregnancy BMI as well as fat mass in early pregnancy determined by air displacement 

plethysmography. They collected breast milk at a half, two, and six months postpartum and 

showed that 23, 17 and 10 metabolites, respectively, were associated with maternal adiposity176. 

Finally, Sims et al. showed that concentrations of insulin, leptin and C-reactive protein were higher 

in breast milk from mothers with overweight/obesity compared to mothers with normal weight 

during several time points throughout lactation (one, two, three, four, and nine months 

postpartum)188. Altogether, several studies point towards an effect of maternal weight status on 

different components of breast milk composition in humans. 

Other factors, including maternal nutrition and geographic location, have also been shown to 

influence breast milk composition. A systematic review included studies that assessed maternal 

usual diet, maternal diet during pregnancy or postpartum, by food-frequency questionnaires, 

dietary records or dietary recalls189. The review included studies from well-nourished populations 

in developed countries only, and concluded that the findings within this area are limited and 

conflicting, but presented some studies showing that maternal nutrition seems to relate to some 

extent to breast milk components including total protein, total fat, different types of fatty acids and 

vitamin C189. Moreover, the human milk oligosaccharide (HMO) concentration has been indicated 

to vary with geographic location in a study showing different concentrations of different HMO’s 

in healthy women living in different parts of the world, including cohorts in countries from North 

America, South America, Europe and Africa. For example, concentration of the HMO 3-

fucosyllactose was higher in breast milk collected from a Swedish population compared to in 

women from rural Gambia190. The study also showed differences in concentrations of several 

HMO’s between women of the same ethnic origin, and therefore likely genetically similar, but 

living in different environments, as evidenced by differences in HMO concentrations between 

women living in rural versus urban sites of Ethiopia and Gambia190. 

Other factors such as medication use in relation to delivery, as well as sleep quantity and quality, 

may also influence breast milk composition, as indicated by studies of other components of 

breastfeeding. Use of epidural analgesia for pain relief in relation to delivery has been associated 
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with delayed initiation of breastfeeding, breastfeeding challenges, negative breastfeeding 

experiences, and early cessation of breastfeeding191–194. Moreover, oxytocin administration during 

delivery has been shown to reduce endogenous oxytocin concentration during breastfeeding two 

days after delivery in a dose-dependent manner, meaning that the more syntocinon (synthetic 

produced oxytocin) the women received during delivery, the lower postpartum oxytocin 

concentration during breastfeeding195. The same study showed that those women who received 

both syntocinon and epidural analgesia during delivery had the lowest median endogenous 

oxytocin concentration during breastfeeding195. Intrapartum oxytocin administration has also been 

indicated to reduce the expression of several primitive neonatal reflexes associated with 

breastfeeding196,197. Moreover, caesarean section may affect early breastfeeding initiation 

negatively and induce more breastfeeding difficulties compared to vaginal delivery198,199 and 

hence, delivery mode may also influence breast milk composition. 
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CONCLUSIONS AND PERSPECTIVES FOR FUTURE 

RESEARCH 

The main objective of this thesis was to investigate the effects of structured supervised exercise 

training versus motivational counselling on PA during pregnancy on GWG and obstetric and 

neonatal outcomes during pregnancy and at delivery in healthy inactive pregnant women and 

their offspring compared to standard care (Paper 2). Moreover, the thesis aimed to explore 

possible underlying mechanisms for exercise-induced improvements in offspring health, 

focusing on changes in breast milk composition 7-14 days after delivery investigated by 

metabolomics and lipidomics analyses (Paper 3). In contrast to previous studies, we found no 

overall effect of our interventions on GWG or obstetric and neonatal outcomes compared to 

standard care. Hence, our two predefined hypotheses for GWG that participants in EXE would 

gain less weight compared to those in MOT, and that participants in MOT would gain less 

weight compared to those in CON, were rejected, which might be explained by a relatively low 

PA level in EXE and MOT. We also found that women with obesity in both EXE and MOT 

gained less weight compared to women with normal weight within the same intervention groups, 

and that associations between PA measures and GWG differed between women with obesity and 

normal weight. This indicated that women with obesity might be more susceptible to the 

beneficial effects of PA compared to women with normal weight, which is in line with findings 

from previous studies (Paper 2).  

During the explorative investigations in relation to underlying mechanisms of exercise-induced 

improvements in offspring health, we found no major changes in the breast milk metabolome and 

lipidome in EXE and MOT compared to CON. This might be explained by the relatively low PA 

level in EXE and MOT as well, and several other confounding factors that might blur the effect of 

prenatal exercise and which we did not control for, for example delivery mode, nutritional status, 

exercise or medication use prior to breast milk sampling. However, we found changes in some 

metabolites and lipids, which supports the existing literature that propose exercise-induced 

adaptations to breast milk as a possible underlying mechanism contributing to improved offspring 

health (Paper 3).  

The conclusions on these secondary outcomes from the FitMum study are connected to a high 

degree of uncertainty, since the study might be underpowered to investigate these specific 

outcomes and sample size calculations were only made for the outcomes moderate to vigorous 

intensity PA and GWG.  
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For future research, studies with the primary objective of investigating effects of human prenatal 

PA interventions on these maternal and offspring health outcomes and possible underlying 

mechanisms for exercise-induced improvements of offspring health, for example with focus on 

adaptations in breast milk, are warranted. Adaptations in breast milk composition constitute only 

one possible mechanism mediating beneficial effects of maternal prenatal PA on offspring health. 

Other possible mechanisms might be epigenetic changes and adaptations in the placenta. In the 

FitMum study we have obtained umbilical cord blood and placenta samples at delivery as well, 

and papers regarding epigenetic changes (DNA methylation) and placenta adaptations are in 

preparation. These may contribute to expand our understanding of mechanisms mediating 

exercise-induced optimization of offspring health. Moreover, a renewed effort to increase PA 

during pregnancy to optimize maternal and offspring health is needed, as well as future research 

focusing on the effects of initiating maternal PA interventions preconceptionally on maternal PA 

before and during pregnancy and on maternal and offspring health outcomes. Furthermore, 

subsequent long-term follow-up in human offspring is warranted. Long-term follow-up is 

important when investigating effects of maternal prenatal PA on human offspring metabolism and 

risk of development of obesity and lifestyle related diseases, since these conditions typically occur 

later in life. Until now, long-term follow-up on adult offspring health after exposure to maternal 

prenatal PA has primarily been carried out in rodent models, which have a shorter generation 

timeline compared to humans. The gap of studies with long-term follow-up on human offspring 

health outcomes might explain the conflicting evidence regarding effects of lifestyle interventions 

during pregnancy, including maternal PA, on risk of childhood obesity. In the FitMum study, we 

currently collect follow-up data on offspring throughout the first year of life and we have recently 

been granted funding to perform follow-up measurements in the children at three years of age as 

well. 
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ABSTRACT
Introduction A physically active lifestyle during 
pregnancy improves maternal and offspring health 
but can be difficult to follow. In Denmark, less than 
40% of pregnant women meet physical activity (PA) 
recommendations. The FitMum study aims to explore 
strategies to increase PA during pregnancy among women 
with low PA and assess the health effects of PA. This 
paper presents the FitMum protocol, which evaluates 
the effects of structured supervised exercise training or 
motivational counselling supported by health technology 
during pregnancy on PA level and health of mother and 
offspring.
Methods and analysis A single- site three- arm 
randomised controlled trial that aims to recruit 220 
healthy, pregnant women with gestational age (GA) no 
later than week 15 and whose PA level does not exceed 
one hour/week. Participants are randomised to one of three 
groups: structured supervised exercise training consisting 
of three weekly exercise sessions, motivational counselling 
supported by health technology or a control group 
receiving standard care. The interventions take place 
from randomisation until delivery. The primary outcome 
is min/week of moderate- to- vigorous intensity PA (MVPA) 
as determined by a commercial activity tracker, collected 
from randomisation until GA of 28 weeks and 0-6 days, 
and the secondary outcome is gestational weight gain 
(GWG). Additional outcomes are complementary measures 
of PA; clinical and psychological health parameters in 
participant, partner and offspring; analyses of blood, 
placenta and breastmilk samples; process evaluation of 
interventions; and personal understandings of PA.
Ethics and dissemination The study is approved by the 
Danish National Committee on Health Research Ethics 
(# H-18011067) and the Danish Data Protection Agency 
(# P-2019-512). Findings will be disseminated via peer- 
reviewed publications, at conferences, and to health 
professionals via science theatre performances.
Trial registration number NCT03679130.

Protocol version This paper was written per the study 
protocol version 8 dated 28 August 2019.

INTRODUCTION
Although the health effects of PA are widely 
acknowledged, the means of how to best 
implement and maintain PA in everyday life 
are lacking.1 Pregnancy can be regarded as 
a window of opportunity to implement good 
habits of PA as pregnant women are in regular 
contact with health professionals and are likely 

Strengths and limitations of this study

 ► The efficacy of structured supervised exercise 
training and motivational counselling supported by 
health technology to improve physical activity and 
reduce weight gain of pregnant women is directly 
compared in a randomised controlled trial.

 ► The trial involves complex interventions and is held 
in one site only, so generalisability and fidelity might 
be a concern. Yet, as one of the additional outcomes, 
a process evaluation is conducted alongside the trial 
to explore how the interventions are carried out and 
adapted.

 ► The study is comprehensive and multidisciplinary in 
its design. Many different methodologies are used, 
and mother, partner and offspring are studied.

 ► Activity trackers can increase physical activity lev-
el and are feasible tools in everyday life, but com-
mercial activity trackers have limited validity for the 
quantification of physical activity.

 ► Physical activity is extensively measured using three 
different methods: commercial activity trackers, 
gold standard doubly labelled water and the validat-
ed Pregnancy Physical Activity Questionnaire.
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motivated to adopt healthy behaviours, as illustrated by 
reduced alcohol consumption and smoking cessation.2–4 
However, pregnancy can be seen as an opportunity to be 
exempt from fitness demands and bodily ideals and can 
be experienced as a troublesome time due to fatigue and 
discomfort.5 6 Moreover, pregnancy is a relatively short 
period of time in regards to forming new habits6 and 
that may affect the motivations and challenges in being 
physically active. Furthermore, differences in work status, 
social relations and family situations, as well as varying 
material and structural conditions, may contribute to the 
implementation of PA.7

Insufficient PA is a global problem8 that occurs also 
during pregnancy.8–12 It is a significant public health 
issue, as increasing evidence suggests that lifestyle during 
pregnancy influences health in the mother and her 
offspring.4 13 Regular PA during pregnancy promotes clin-
ical and metabolic health in both mother and offspring 
and reduces the number of complications during preg-
nancy and delivery.14–19 PA reduces GWG,20–26 the risk 
of gestational diabetes mellitus,27–32 the intensity of low 
back pain33 and the risk of caesarean delivery22 29 34–37 
and improves maternal body composition.38 Addition-
ally, a physically active pregnancy improves the health of 
the offspring by normalising birth weight,22 reducing the 
risk of preterm delivery39 40 and improving neonatal body 
composition41 42 as well as placental function,43 44 which 
results in optimised intrauterine growth conditions.

The Danish Health Authorities recommend that healthy 
pregnant women are physically active for at least 30 min/
day at moderate intensity,45 but only 38% of Danish preg-
nant women achieve this recommended level.46 Several 
barriers to PA during pregnancy are addressed in the 
literature,47 including anxiety about overdoing exercise, 
low motivation to adopt an active lifestyle during preg-
nancy, changing energy levels throughout the pregnancy 
and lack of time to be physically active.48 The latest 
recommendations on lifestyle interventions during preg-
nancy support individualised advice on how to increase 
the PA level rather than a generic approach,6 as pregnant 
women prefer personalised information.49 Consequently, 
policymakers, healthcare professionals and pregnant 
women advocate for evidence- based guidance on how to 
implement PA in everyday life during pregnancy safely 
and effectively, with approaches that meet the needs, 
preferences and choices of the pregnant woman.

During the past decades, many PA intervention studies 
in pregnant women have been conducted on over-
weight and obese populations23 24 26 28 50–57 as well as in 
healthy normal- weight pregnant women.20 21 32 33 58–61 
Still, none of these studies have focused primarily on 
investigating the effect of the exercise interventions on 
actual PA level in pregnant women nor have they used 
novel objective methods to measure actual PA levels. 
Structured, supervised exercise training and motivational 
counselling have been applied separately in pregnant 
women,20 21 23 24 26 28 32 33 50–55 58–63 but the relative efficacy of 
these interventions has not been compared; this hampers 

the evidence- based implementation of effective exercise 
programmes into everyday life.

Objective
This paper describes the protocol of the FitMum study, 
which is a randomised controlled trial (RCT). The 
FitMum RCT aims to evaluate the effects of structured 
supervised exercise training (EXE) and motivational 
counselling supported by health technology (MOT) 
compared with standard care (CON) on PA level and 
GWG during pregnancy. Additional aims of the study 
are to investigate the effects of EXE and MOT on clin-
ical and metabolic health parameters in both mother and 
offspring. We will also explore how the FitMum exercise 
programmes are carried out and adopted by conducting 
a process evaluation. In addition, we explore the personal 
attribution of meaning to the experiences and practices 
of PA among participants. Furthermore, we investigate 
how social, structural and cultural factors facilitate or 
hinder the successful implementation of exercise during 
pregnancy.

METHODS
Study design
The FitMum RCT is a single- site, three- arm randomised 
controlled trial study.

Setting
The study is carried out at the Department of Gynae-
cology and Obstetrics, Nordsjaellands Hospital (NOH), 
Hillerod, in the Capital region of Denmark, where 
approximately 4000 women give birth per year. NOH is 
a public hospital, and participation in FitMum is free of 
charge.

Participants
This study aims to include 220 healthy, pregnant women. 
Inclusion criteria are obtained written informed consent, 
maternal age of 18 years or older, gestational age (GA) 
of maximum 15 weeks, ultrasonic- confirmed viable intra-
uterine pregnancy, body mass index of 18.5–45 kg/m2 
and body weight <150 kg (prepregnancy weight or first 
measured weight in pregnancy), ability to wear a wrist- 
worn activity tracker 24/7 until one year postpartum and 
having a smartphone. Exclusion criteria are structured 
exercise at moderate- to- vigorous intensity for more than 
one hour/week during early pregnancy, previous preterm 
delivery, obstetric or medical complications, multiple 
pregnancies, inability to speak Danish, or alcohol or drug 
abuse.

Recruitment and inclusion
Participants are recruited: (1) via booking confirmation 
of a first- trimester scan, (2) at face- to- face meetings during 
the first- trimester scan and (3) through posters, flyers and 
social media. Before inclusion, interested women answer 
an online, one- page prescreening questionnaire. Eligible 
participants and their partners are invited to the first 
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visit at NOH as soon as possible and no later than GA 
of 14 weeks and 6 days. At visit 1, the woman is verbally 
informed about the study and screened according to 
inclusion and exclusion criteria. Women who have not 
had a first- trimester scan are vaginally scanned to confirm 
a singleton, viable intrauterine pregnancy. All eligible 
women are included, and written informed consent is 
obtained (online supplemental file 1). Written informed 
consent is also obtained from the partner as biological 
samples are collected from the offspring and from the 
partner (online supplemental file 2). After inclusion, we 
obtain anthropometric and demographic information, a 
blood sample as well as a short semistructured interview 
with the participant. The interview provides knowledge of 
the participant’s thoughts on participating in a research 
project, knowledge of prior and current PA level, and 
experiences with health technologies.

At the end of visit 1, the participant receives a commer-
cial activity tracker, Garmin Vivosport. The participant is 
instructed to wear the tracker continuously 24/7 from 

the one week baseline period until one year postpartum, 
except during charging. The activity tracker is water resis-
tant and determines the frequency, duration and intensity 
of activity periods on a minute- to- minute basis. The data 
from the activity tracker are wirelessly synced to the asso-
ciated app, Garmin Connect, provided by Garmin Inter-
national, and the research platform Fitabase (Small Steps 
Labs LLC), through which the compliance of wearing 
and synchronising the data from the tracker are continu-
ously monitored during the study.

Baseline period and randomisation
After inclusion, the baseline PA level of the participant 
is measured by the activity tracker for one week. After 
the baseline period, participants are randomised into 
the EXE, MOT and CON groups (figure 1). The target 
number of participants randomised to each group is 88, 
88 and 44, respectively, in order to have more participants 
in the intervention groups. Randomisation is performed 
via a numbered randomisation list administered 

Figure 1 Flow diagram of the FitMum RCT.
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through the database Research Electronic Data Capture 
(REDCap), and the investigators are blinded to the proce-
dure. Blinding of participants is considered impossible 
due to the inherent content of the exercise interventions. 
The participant is informed about the assigned group by 
email, and participants in EXE and MOT receive written 
information containing guidelines from the Danish 
Health Authorities about PA during pregnancy.

Patient and public involvement
Template for Intervention Description and Replication64 
was used as inspiration for the development and descrip-
tion of the study. As a part of the development phase, 
stakeholders in the field were involved in discussions and 
sharing of knowledge. Additionally, 27 semistructured 
interviews with Danish pregnant women, midwives and 
obstetricians were performed to explore the feasibility 
of such a study as well as the motivational factors and 
barriers to PA during pregnancy. Participants are not 
directly involved in the recruitment and conduct of the 
study, but a process evaluation is conducted, and personal 
understandings of the participants are obtained via inter-
views (see further). The insights from the study will be 
shared with the participants at an information meeting 
after the end of the study.

Interventions
Standard care at the hospital
All three groups are offered the standard care that applies 
to women giving birth at NOH. This consists of three 
appointments with their general practitioner (GA weeks 
6–10, 25 and 32), five to six midwife consultations (GA 
weeks 14–17, 29, 36, 38, 40 and if still pregnant around 
week 41 as well) and ultrasonic scans at GA weeks 12 and 
20.

Standard care control group (CON)
Participants in CON wear an activity tracker to determine 
their activity level. The face of the tracker looks like a 
normal watch showing only time and battery life.

Structured supervised exercise training intervention (EXE)
The targeted PA level for all participants in EXE and MOT 
is at least 30 min/day at a moderate intensity as recom-
mended to healthy pregnant women,6 and all participants 
are informed hereof if randomised to EXE or MOT. In 
EXE, exercise training takes place in teams and is super-
vised by health professionals (exercise physiologists, phys-
iotherapists and public health scientists). It consists of 
three weekly 1- hour exercise sessions at moderate inten-
sity, including two exercise sessions in a gym and one 
in a public swimming pool. The gym sessions consist of 
a combination of aerobic and resistance training with 
30 min stationary bike training (a combination of hill 
climbing and high cadence intervals) and 30 min of 
other exercise, for example, elastic bands, exercise balls, 
mats, dumbbells or body weight. In the swimming pool, 
participants do 15 min of swimming and 45 min of water 
exercises with plates, balls, dumbbells or body weight. 

Moderate intensity during training sessions is assessed 
using both heart rate monitoring of 65%–80% of age- 
predicted maximal heart rate (from the activity tracker) 
and perceived exertion in the range of 12–14 on Borg’s 
conventional 6–20 point scale,64 as recommended by the 
American College of Obstetricians and Gynaecologists.14 
If a participant experiences any pain or needs to decrease 
intensity, the content of exercise sessions (repetitions 
and/or resistance) is individually adjusted accordingly. 
Special attention is paid to the newly recruited partic-
ipants. Exercise sessions are offered at seven different 
times per week, and participants are recommended to 
sign up for three of these sessions. The sessions are held 
early mornings or late afternoons all weekdays and before 
noon on Fridays and Saturdays.

Motivational counselling supported by health technology (MOT)
This intervention is composed of four individual and 
three group counselling sessions as well as weekly SMS 
reminders. The overall focus of both the individual and 
group counselling sessions is based on what already moti-
vates the participants to increase or maintain their PA 
level. The motivation technique applied is inspired by 
motivational interviewing,65 self- determination theory66 
and behaviour change techniques.67

All four individual sessions last one hour and are led 
by professional health counsellors (exercise physiolo-
gists, physiotherapists and public health scientists). The 
sessions aim to discuss the participant’s barriers, wishes, 
needs, knowledge and former PA experiences to identify 
individual characteristics and motivation towards a more 
physically active lifestyle. Aside from measuring the PA 
level, the activity trackers are also used as an intervention 
element to motivate the participants to increase their PA 
levels.68 During individual sessions, feedback on recent PA 
performances is provided based on activity data acquired 
from the activity tracker, in order to give the participants 
insight into their PA level. The participants will, with guid-
ance from the counsellor, set their own activity goals and 
make an individual action plan to increase the PA level, 
which may have a motivating effect on PA behaviour.68 69 
Individual sessions are scheduled during the daytime as 
conveniently for the participant as possible.

The first group session lasts one hour and aims to inform 
the participants about guidelines for PA, benefits asso-
ciated with PA during pregnancy and possible ways to 
increase PA during pregnancy. In the following two 
2- hour group sessions, the interaction between the partic-
ipants is used to create meaningful group processes such 
as support, experience exchange, reflection, learning 
and development. These sessions focus on the discussion 
of relevant topics concerning PA during pregnancy, and 
the counsellor acts as a facilitator through the session, 
with the topics of conversation chosen by the partici-
pants. Issues like postpartum PA, the pelvic floor, uterine 
contractions, abdominal muscles and diastasis recti, and 
myths about pregnancy PA are discussed. Group sessions 
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are held late afternoons or before noon for those on 
maternity leave.

The weekly SMS reminders have supportive and moti-
vating content and are used to encourage the participants 
to achieve a moderate PA level. The texts are chosen 
based on every participant’s PA level during the last week 
measured by the activity tracker. One example of the 
text: ‘You have been exercising regularly for an extended 
period of time. Well done. Good habits make it easier for 
you to continue as your belly gets bigger and heavier’.

Outcome measures
The data collection procedures are illustrated in table 1.

Primary outcome: moderate-to-vigorous intensity physical activity
The primary outcome of FitMum RCT is min/week of 
MVPA measured continuously from randomisation to GA 
of 28 weeks and 0-6 days as determined by a wrist- worn 
activity tracker, Garmin Vivosport, with a built- in heart 
rate monitor and accelerometer.

Secondary outcome: gestational weight gain
Body weight of the participant before pregnancy is self- 
reported. The body weight during pregnancy is measured 
four times from inclusion until delivery on the same 
scale (Seca 799) with the participant in light clothes and 
without shoes.

Additional outcomes
Complementary measures of physical activity
Complementary measures of PA are obtained by the 
Danish version of ‘Pregnancy Physical Activity Question-
naire’ (PPAQ)70 named PPAQ- DK and by the doubly 
labelled water technique.71

PPAQ is a semiquantitative and subjective instrument, 
which has been validated70 and is considered one of the 
most valid and reliable questionnaires for the assessment 
of PA level in pregnant women.72 Our research group has 
translated PPAQ to Danish and validated it in a Danish 
pregnant population.73

The doubly labelled water technique is the ‘gold stan-
dard’ technique to measure free- living energy expendi-
ture objectively and is safe, even for pregnant women, as it 
relies on stable, non- radioactive isotopes.74–77 The partic-
ipants are administered a glass of water for oral intake 
containing 0.1 g of 99.8% 2H2O and 1.6 g of 10% 18O per 
kg body weight. In total, five postdose urine samples are 
collected in the morning (not the first urine void of the 
day); on the day after oral water dosage; and after four, 
seven, 11 and 14 days. The urine samples are stored in the 
participant’s freezer and later at −80°C.

In addition, the PA of the participants is determined 
from GA week 29 until delivery and in the first year post-
partum by the activity tracker. The measures of PA include 
active calories, active time, steps, heart rate, moderate- 
intensity and vigorous- intensity activity, floors climbed, 
MET- min/week and type of activity, which is recognised 
automatically by the tracker.

Clinical and psychological health parameters in participant, partner 
and offspring
A variety of clinical and psychological health parameters 
are obtained from the participant, her partner and her 
offspring. Clinical data regarding pregnancy, delivery and 
neonatal outcomes are collected from medical records. 
Health- related quality of life is determined in the partic-
ipant by the Danish version of the Medical Outcomes 
Study Short Form 36,78 79 which has also been validated 
in pregnant women.80 Exercise self- efficacy is determined 
by the Danish version of the Pregnancy Exercise Self- 
Efficacy Scale (P- ESES).81 P- ESES has been translated into 
Danish and validated in a Danish pregnant population by 
our research group.82 PA motivation is determined by the 
Danish version of the Behavioural Regulation in Exercise 
Questionnaire (BREQ-2),83–85 which is the most widely 
used measure of the continuum of behavioural regulation 
in exercise psychology research. Sleep quantity and quality 
are assessed in the participant by the activity tracker and by 
the Danish version of the self- administered questionnaire 
Pittsburgh Sleep Quality Index (PSQI).86 87 The PSQI is 
considered a valid and reliable tool to assess sleep metrics 
among pregnant women.88 In addition, a validation of 
activity trackers to measure sleep will be conducted using 
polysomnography in a subgroup of women already partic-
ipating in the FitMum study. Sick leave and pelvic and low 
back pain are registered by asking the participant whether 
she has been absent from work/study and on sick leave 
during her pregnancy and whether she has experienced 
pelvic and/or low back pain before and during her preg-
nancy. Maternal body composition is determined from total 
body water measured by doubly labelled water technique 
and by a postpartum dual- energy X- ray absorptiometry 
(DXA) scan. Offspring growth: head circumference, length 
and weight is measured at birth and by general practi-
tioners at five weeks, five months and 12 months post-
partum. Participants receive an electronic questionnaire 
and fill out the anthropometric data along with infor-
mation on offspring dietary habits and vaccine status. 
Parental mental well- being is assessed six to eight weeks 
after birth. Both parents or holders of custody receive 
a questionnaire consisting of the Edinburgh Postnatal 
Depression Score and Gotland Depression Scale, which 
are combined as a screening tool for postnatal depres-
sion89–92 in Danish postnatal care. Psychomotor development 
of the offspring is assessed by the validated Ages and Stages 
Questionnaire 3 (ASQ-3), which is administered electron-
ically to participants 12 months after the due date. ASQ-3 
pinpoints developmental progress in the fields of commu-
nication, gross motor, fine motor, problem solving and 
personal- social skills. The administration of ASQ-3 rela-
tive to due date and not to birth date aims to correct for 
variance in cognitive and motor skills due to premature 
birth. Offspring physical activity is assessed for seven days by 
an infant activity tracker (Actigraph GT3X+) 12 months 
after the due date. The tracker detects level, intensity and 
pattern of physical activity.
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Analyses of blood, placenta and breastmilk samples
Plasma metabolites and hormones are assessed in maternal 
and paternal venous blood. The blood samples will be 
analysed for concentrations of glucose, cholesterol (total, 
high and low density), triglyceride, free fatty acids, amino 

acids, interleukin-6, and C reactive protein. Venous blood 
is obtained from the umbilical cord within 30 min after 
delivery of the placenta. The blood will be analysed for 
concentrations of glucose, cholesterol (total, high and 
low density), triglyceride, insulin, c- peptide, free fatty 

Table 1 Procedures and measurements in FitMum RCT

Visit number Visit 1
Email 
randomisation Visit 2 Visit 3 Visit 4 Visit 5

One year 
after deliveryGestational age (week+days)

Screening and 
baseline testing 
max. 15+0

One week after 
inclusion

Week 
28+0–6

Week 
34+0–6

Delivery 7–14 days 
after 
delivery

Approximately 
week 40

Ultrasound scan ×             

Oral information about the study ×             

Medical interview to assess inclusion and 
exclusion criteria

×             

Demographic, anthropometric, sickness 
absence and pelvic/low back pain data

×     ×   ×     ×   

Medical history, concomitant disease and 
previous medication

×             

Demographic and anthropometric data of the 
participant’s partner

×             

Written informed consent ×             

Activity tracker and associated oral and 
written information

×             

Randomisation   ×           

Methodology for obtaining outcomes

Activity tracker Continuously during the trial and one year after delivery

Maternal body weight ×   × × × × Six times at 
home during 
the first year 
postpartum

Doubly labelled water     ×         

Questionnaires: PPAQ- DK, SF-36, PSQI, P- 
ESES, BREQ-2

×   × ×     ×

Maternal blood samples ×   × × ×     

Paternal blood sample         ×     

Umbilical cord blood sample         ×     

Placenta samples         ×     

DXA scan           ×   

Breastmilk sample           ×   

Qualitative interview ×     ×     ×

Observation and autodocumentation   Recurring

ASQ-3     ×

Growth assessment at general practitioner     Five weeks, 
and five and 
12 months

Parental mental well- being questionnaire     Six to eight 
weeks 
postpartum

7- day child accelerometer     ×

Safety

Record adverse events     × ×       

Symphysis- fundal height     × ×       

ASQ-3, Ages and Stages Questionnaire 3; BREQ-2, Behavioural Regulations Exercise Questionnaire; DXA, dual- energy X- ray absorptiometry; PA, physical activity; 
P- ESES, Pregnancy Exercise Self- efficacy Scale; PPAQ- DK, Pregnancy Physical Activity Questionnaire (Danish version); PSQI, Pittsburgh Sleep Quality Index; SF-
36, The Medical Outcomes Study Short Form 36.
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acids, amino acids, adiponectin and leptin. Furthermore, 
epigenetic profiling at the level of DNA methylation will 
be performed in maternal, paternal and umbilical cord 
blood mononuclear cells. Bioinformatic comparison of 
DNA methylomes from parents and offspring will infer 
on the DNA methylation marks that are modulated 
by maternal exercise and transmitted to the offspring. 
Information on DNA methylomes from each parent will 
allow us to distinguish between maternally and paternally 
epigenetic profiles transmitted to the offspring. Principal 
component analyses will be used to identify the specific 
metabolic or anthropometric features of the mother that 
are associated with a specific DNA methylation footprint 
transmitted to the offspring. Placental function is assessed 
from samples taken within 30 min after delivery of the 
placenta. The samples are immediately frozen on dry ice 
and stored at −80°C. Analyses will include RNA- seq, non- 
targeted metabolomics, RT- qPCR, Western blot, histology 
and immunohistochemistry. Breastmilk is obtained from a 
single feed at the day of visit 5 and stored at −80°C for 
later metabolomic and lipidomic analyses.

Process evaluation of interventions
A process evaluation is made using quantitative and 
qualitative methods to provide insight into mechanisms 
through which interventions bring about change, assess 
fidelity and quality of implementation, clarify causal 
mechanisms and identify contextual factors associated 
with variations in outcomes.93–95 Integrating process 
evaluations alongside outcome data is recommended by 
the UK Medical Research Council guidelines in order to 
develop and evaluate complex interventions to improve 
the interpretation of the outcomes, design more effec-
tive interventions and apply interventions appropri-
ately across groups and settings by understanding the 
implementation and functioning of interventions in a 
given context.94 96 The Reach, Effectiveness, Adoption, 
Implementation, and Maintenance framework is used to 
improve reporting on key issues related to the implemen-
tation and external validity of FitMum RCT.97

Personal understandings of physical activity
The qualitative dataset is composed of 220 short stan-
dardised screening interviews, 30 semistructured inter-
views, 70 observations, five sets of autoethnographies, 
visual material, as well as drop- out and follow- up inter-
views. This subproject will explore the physical and 
mental health and well- being of the participants, their 
social relations, PA levels and their experience of preg-
nancy to identify the challenges and barriers of PA during 
pregnancy. Personal understandings of PA in the everyday 
life of participants are determined at inclusion, GA week 
34 and one year postpartum, in approximately ten partic-
ipants from each of the three study groups.

Changes during the COVID-19 pandemic
Due to the COVID-19 pandemic (present in Denmark 
from 11 March 2020), supplies of interventions (EXE and 

MOT) and visits are periodically changed. During the 
lockdown period in spring 2020, all visits (except birth) 
are converted into online versions using Zoom Cloud 
Meetings or telephone. From 11 March 2020, in EXE, 
the swimming pool sessions are replaced with online land 
exercises and all land exercise sessions consist of 30 min 
of aerobic exercise where the participants exercise on 
their own (eg, biking, power- walking, dancing and aero-
bics) followed by 30 min of supervised online group resis-
tance training. All individual and group MOT sessions are 
held online.

As much data as possible are collected during the 
pandemic, but some clinical data have not been possible 
to obtain in all participants due to limitations on non- 
urgent visits to the hospital. No blood samples are 
obtained at the virtual ‘visits’, women are weighed at 
home and symphysis- fundal height measurements are 
not obtained. No doubly labelled water is administered at 
the virtual ‘visit’ 2. The participant’s body weight at visit 
4 is noted by the midwives on the day of giving birth, but 
biological samples are not collected. No DXA scans or 
breastmilk samples are collected at ‘visit’ 5.

Data management and analysis
Data management
The activity tracker data are collected by Fitabase, which 
regularly backs up the data. A participant who does 
not synchronise the tracker for seven days or more is 
reminded by email, text message or phone call. All tracker 
data are exported from Fitabase to R98 for data analysis. 
Tracker data are used to calculate non- wear time; a week 
is included in the analysis if the week has four or more 
days with complete data. A day that has six hours or more 
of non- wear time is excluded and considered a missing 
day. An electronic case report form (e- CRF) is used to 
collect all clinical data related to the trial. Data are stored 
in coded form according to the rules of the Danish Data 
Protection Agency. Personal data processing complies 
with the Act on Processing of Personal Data. Data are 
owned by NOH and University of Copenhagen. Use of 
data generated in FitMum RCT in new contexts must be 
agreed and approved by the Steering group. Technical 
University of Denmark and Aarhus University must have 
access to the data they have collected and are free to use 
it in new contexts. The e- CRF is completed by the investi-
gators at the time of the participant’s visits at NOH so that 
it always reflects the latest observations of the participant. 
Data will be stored for ten years, after which they will be 
transferred to the Danish National Archives ‘Rigsarkivet’ 
in an anonymised format.

Sample size
FitMum RCT has been powered to detect an overall signif-
icant difference in the primary outcome between the 
three groups as well as a significant difference between 
the two intervention groups (EXE vs MOT) with average 
activity levels of 210 (EXE), 150 (MOT) and 60 (CON) 
min/week. The SD was set at 116 min/week and based 
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on the results from Oostdam et al.51 The required sample 
size is determined to obtain a power of 80% with a family- 
wise significance level of 5%. The sample size calculation 
showed that the required number of participants is 35 
in CON and 70 in each of the two intervention groups 
due to the randomisation ratio of 1:2:2 to CON, EXE and 
MOT, respectively. Based on an expected lost to follow- up 
rate of 20%, as seen in similar exercise studies in preg-
nant women,28 32 33 51 we plan to include 44 participants in 
CON and 88 participants in each of the two intervention 
groups, making a total of 220 participants.

Statistical methods
Data analyses of both primary and secondary outcomes 
will be performed using intention- to- treat analyses. In 
addition, a dose–response model will be estimated to 
quantify the relationship between adherence to the 
intervention (proportion of attendances in the planned 
EXE and MOT sessions, respectively) and the activity 
level. Moreover, analyses describing associations between 
the level of physical activity (as measured by the activity 
tracker) and the secondary and additional outcomes will 
be performed. Baseline data will be reported as aver-
ages and SDs (medians and IQRs) or frequencies and 
proportions as appropriate. No interim analyses will be 
performed on the primary and secondary outcomes. 
The analysis of the primary outcome will be performed 
using a linear model with the randomisation group as a 
categorical covariate and with adjustment for baseline PA 
level. Hypothesis tests will be performed using likelihood 
ratio tests. Statistical analysis will be conducted using R.98 
Analyses of the primary outcome will be performed by 
a statistician blinded from the intervention allocations. 
Investigators will perform analyses of baseline data and 
secondary and additional outcomes under the super-
vision of a statistician. A full statistical analysis plan is 
published in  ClinicalTrials. gov.99

Trial status
The recruitment of participants began in September 
2018 and ended in October 2020. Data collection of the 
primary outcome is completed in spring 2021. Full data 
collection is expected to be complete in 2022.

Ethics and dissemination
The FitMum study adheres to the principles of the 
Helsinki declaration. The study is approved by the 
Danish National Committee on Health Research Ethics 
(# H-18011067) and the Danish Data Protection Agency 
(# P-2019-512).

All participants consent in written form before inclu-
sion and are informed that participation in the FitMum 
study is voluntary. Participants are informed that they may 
withdraw from the study at any time and that withdrawal 
of consent will not affect any subsequent pregnancy and 
delivery processes at NOH. The participant has time to 
ask questions and is allowed 24 hours to deliberate on 

study participation before the obtainment of written 
informed consent.

FitMum RCT is designed based on recommendations of 
appropriate PA during pregnancy,14 45 100 101 and although 
anatomic and physiological changes occur during 
pregnancy, PA during an uncomplicated pregnancy is 
safe.14 22 29 40 60 102–105 All information about adverse events 
and serious adverse events are documented consecutively 
and will be reported. Participants will be discontinued 
from the intervention if they are at risk of preterm birth, 
if a cervical length below 25 mm is measured, if serious 
obstetric or medical complications occur, if investigators’ 
assessment reveals that continuation in the trial would be 
detrimental to the participant’s well- being or if intoler-
able adverse events occur.

The FitMum study will provide evidence- based knowl-
edge that can contribute to improving national and inter-
national recommendations of PA during pregnancy and 
to new, effective and simple guidance to implement health 
technology- supported exercise programmes to pregnant 
women. Based on the results and process evaluation, the 
knowledge and tools from the FitMum study can be trans-
formed into initiatives in municipalities and hospitals to 
improve the health and quality of life for both mother 
and child and can be used for preventing the develop-
ment of lifestyle- related diseases across generations.

Findings will be submitted for publication in peer- 
reviewed scientific journals and disseminated at national 
and international conferences. In addition, results will 
be disseminated to the public in relevant media and to 
health professionals via science theatre performances.

DISCUSSION
The FitMum study aims to evaluate the effects of struc-
tured supervised exercise training and motivational coun-
selling supported by health technology on PA level during 
pregnancy to generate evidence about how to implement 
PA in everyday life in healthy pregnant women. Previous 
studies have investigated the effect of different lifestyle 
interventions on various health outcomes in normal 
weight,23 24 26 28 50–57 overweight and obese pregnant 
women.20 21 32 33 58–61 However, none of these studies have 
focused primarily on investigating the effect of PA inter-
ventions on actual PA level determined by novel objective 
methods. In addition, the FitMum study compares the 
effect of two very different PA interventions to explore 
strategies to implement PA programmes into pregnant 
women’s everyday life. Moreover, offspring of FitMum 
participants will be studied for one year after birth, 
whereby knowledge on the effect of PA during pregnancy 
on offspring health will be obtained. A limitation of the 
study is that the true effect of motivational counselling 
is not identified, as technology is an integral part of the 
MOT intervention.

Consumer- based wearable activity trackers tend to 
increase PA level when they are used as an intervention 
tool or as part of an intervention.106 Activity trackers are 
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often relatively light weight, comfortable to wear and 
rechargeable.107 In addition, using an activity tracker 
to measure PA during pregnancy is feasible, recom-
mended108 and has a reasonable compliance rate during 
pregnancy and after giving birth.109 However, there are 
some challenges and limitations of using activity trackers 
in a long- term intervention study. First, the participants 
must recharge the device and synchronise their data 
approximately once per week, which burdens participants 
and challenges adherence and compliance. Second, we 
cannot control the interaction of CON participants with 
the tracker. Third, the main goal for the tracker’s design is 
a comfortable wear, yet wearing the tracker for extended 
periods of time may cause skin irritation and discom-
fort.110 Moreover, the unavailability of the raw data and 
algorithms used by the manufacturer creates a limitation 
in the validation of PA metrics.107 Therefore, measuring 
PA by a variety of methods, and comparing these methods 
with the doubly labelled water technique (a gold standard 
method), will be used in order to obtain comprehensive 
measures of PA behaviours in FitMum participants.
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Condensation: Overall, two different prenatal exercise interventions did not affect gestational 

weight gain, obstetric or neonatal outcomes, but pregnant women with obesity may benefit from 

exercise.  

 

Short Title: Roland et al. Prenatal exercise interventions for maternal health. 

 

AJOG at a Glance: 

Why was this study conducted? 

Prenatal exercise improves maternal and neonatal outcomes, but efficacy of different types of 

intervention needs to be compared. We investigated the effects of two different exercise 

interventions on gestational weight gain and obstetric outcomes compared to standard care with 

special focus on prepregnancy body mass index. 

What are the key findings? 

None of the exercise interventions affected gestational weight gain, obstetric or neonatal outcomes 

compared to standard care. However, pregnant women with obesity may be more susceptible to 

exercise benefits. 

What does this study add to what is already known? 

We compared health effects of two different prenatal exercise interventions with standard care and 

developed a novel method to estimate gestational weight gain for the entire pregnancy period.  
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Abstract 

Background: Prenatal exercise might influence gestational weight gain (GWG) and obstetric and 

neonatal outcomes, but efficacy of different types of intervention needs to be compared.  

Objective: To investigate the effects of two different exercise interventions; structured supervised 

EXErcise training (EXE) versus MOTivational counselling on physical activity (PA) (MOT), on GWG 

and obstetric and neonatal outcomes compared to CONtrol (CON) receiving standard care. 

Additionally, we aimed to investigate if effects of prenatal exercise on GWG depended on 

prepregnancy body mass index (BMI).  

Study design: This study was a randomized controlled trial including 219 healthy inactive women 

at median gestational age (GA) 12.9 (9.4-13.9) weeks and randomized to one of three study 

groups consisting of EXE three times per week throughout pregnancy (n=87), MOT seven times 

during pregnancy (n=87), or CON (n=45). Uniquely, to investigate GWG at specific time points, we 

estimated GWG by a novel method based on longitudinally observed body weights during 

pregnancy and at admission for delivery. Observed weights were fitted to a mixed effects model 

that was used to predict maternal body weight and estimate GWG at different gestational ages. 

Obstetric and neonatal outcomes, among them gestational diabetes mellitus (GDM) and infants 

born large for gestational age (LGA), were obtained after delivery. The aims were investigated by 

both the randomized controlled trial design to investigate differences between groups, and an 

observational design to analyze the influence of prenatal PA per se. 

Results: In total 178 participants (81%) completed the study. Total GWG (estimated GWG at GA 

40+0 weeks) did not differ between groups (CON: 14.9 kg [95% CI, 13.6;16.1]; EXE: 15.7 kg 

[14.7;16.7]; MOT: 15.0 kg [13.6;16.4], p=0.538), neither did obstetric nor neonatal outcomes. For 

example, there were no differences between groups in the proportions of participants developing 

GDM (CON: 4%, EXE: 6%, MOT: 7%, p=0.934) or having an LGA infant (CON: 6%, EXE: 10%, 

MOT: 13%, p=0.526). However, stratification of participants into subgroups based on their 

prepregnancy BMI showed that participants with obesity in MOT had lower total GWG compared to 
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participants with normal weight in MOT (-7.3 kg [95% CI, -11.4;-3.2], p<0.001). Likewise, 

participants with obesity in EXE had a lower total GWG compared to EXE participants with normal 

weight (-4.4 kg [-8.4;-0.3], p=0.023). In addition, analyzing all participants independent of group 

allocation in an observational design showed that associations between moderate to vigorous 

intensity PA (MVPA) and total GWG as well as active kilocalories and total GWG differed between 

women with obesity and normal weight (MVPA: difference between slopes -0.04 [-0.07;-0.03∙10-1], 

p=0.034; Active kilocalories: difference between slopes -0.01 [-0.02;-0.04∙10-1], p=0.003).  

Conclusion: Overall, during pregnancy neither structured supervised EXErcise training nor 

MOTivational counselling on PA affected GWG or obstetric and neonatal outcomes in healthy 

pregnant women compared to standard care. However, women with obesity in both intervention 

groups gained less weight compared to women with normal weight within the same intervention 

groups. Further, associations between PA measures and total GWG differed between women with 

obesity and normal weight. 

 

Key words: delivery, intervention, maternal exercise, moderate to vigorous intensity physical 

activity, obesity, pregnancy, obstetric outcomes 
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Introduction 

Maternal prenatal exercise has been indicated in many studies to reduce GWG1–3 and incidence of 

other pregnancy and delivery related complications including GDM, preeclampsia, gestational 

hypertension, preterm delivery, caesarean section and odds of instrumental delivery.3–5 Further, 

prenatal exercise has been shown to reduce duration of labor in some pregnant populations6 and 

to be associated with optimization of offspring birth weight into a healthy range,5,7,8 but the 

literature is inconsistent.9  

In order to optimize the health benefits from maternal exercise, it remains to be investigated which 

exercise approaches are more effective to improve health of mother and offspring.4 Structured 

supervised exercise training and motivational counselling on PA constitute two exercise 

approaches being widely used in the literature.3,10 Both approaches have been applied separately 

in pregnant women with normal weight11–17 and overweight and obesity,18–25 but a direct 

comparison of the effectiveness of the two approaches on improving GWG and obstetric and 

neonatal outcomes has not been conducted. Furthermore, GWG recommendations vary based on 

prepregnancy BMI,26 measurement of GWG has not been standardized, and studies using 

comprehensive measures of PA are warranted to nuance the understanding of how prenatal 

exercise influences health.  

In this randomized controlled trial27 we aimed to investigate the effects of EXE or MOT during 

pregnancy on GWG and obstetric and neonatal outcomes compared to CON, and to investigate 

the influence of prepregnancy BMI. Our hypotheses were that GWG would be lower in EXE 

compared to MOT, and in MOT compared to CON.  
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Materials and Methods 

Participants and study procedures 

The FitMum study was a randomized controlled trial27 conducted in 2018-2021 at Nordsjaellands 

Hospital, Hillerod, Denmark. Healthy pregnant inactive women (n=220) were enrolled in early 

pregnancy (GA≤15+0 weeks). The primary objective was to investigate the effect of the two 

different exercise interventions (EXE and MOT) on MVPA during pregnancy compared to CON (yet 

unpublished data), whereas this paper reports secondary outcomes of the study. Demographic 

information was obtained at inclusion and prepregnancy BMI (kg/m2) was calculated based on self-

reported prepregnancy weight and height. PA, including MVPA, steps, and active kilocalories, was 

measured continuously from inclusion to delivery by a wrist-worn activity tracker (Garmin 

Vivosport). Randomization (n=219) in a 1:2:2 pattern to either CON, EXE, or MOT, respectively, 

occurred after a one-week baseline period (GA≤16+0 weeks). Participants in the EXE intervention 

were offered supervised exercise training at moderate intensity three times per week, while the 

MOT intervention consisted of seven motivational counselling sessions on PA during pregnancy. 

During the COVID-19 pandemic, starting from March 11th, 2020 and throughout the intervention 

period, exercise training sessions, motivational counselling sessions and periodically test visits 

(except delivery) were conducted online using Zoom Cloud Meetings or telephone. The study was 

approved by the Danish National Committee on Health Research Ethics (#H-18011067) and the 

Danish Data Protection Agency (#P-2019-512). Written informed consent was obtained from all 

participants. 
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Outcome measurements 

Gestational weight gain 

Prepregnancy body weight was self-reported by the participants. From inclusion all weight 

measurements were recorded to the nearest 0.1 kg on calibrated electronic scales (SECA799) at 

baseline (GA≤15+0 weeks), GA 28+0-6 and 34+0-6 weeks (visit 2 and 3), and at delivery. During 

COVID-19, women were weighed at home on private scales. To estimate GWG for the entire 

pregnancy and account for missing measurements and individual differences in GA at delivery, all 

observed weights (self-reported and measured) were fitted to a mixed effects model to predict the 

weights at specific timepoints throughout pregnancy at the participant-level. GWG was estimated 

at GA 12+0, 28+0, and 40+0 weeks as the difference between the predicted weight and predicted 

prepregnancy weight (GA=0). The total GWG during pregnancy was defined as the estimated 

GWG at GA 40+0 weeks26,28 and used in further stratification analyses of participants into 

subgroups based on their prepregnancy BMI and whether they had a total GWG below, within or 

above the Institute of Medicine’s (IOM) recommendations.26 IOM recommends a GWG of 11.5-16 

kg, 7-11.5 kg and 5-9 kg for women with normal weight, overweight and obesity, respectively26 and 

prepregnancy BMI were defined according to the World Health Organization’s BMI categories.29 

 

Obstetric and neonatal outcomes 

Obstetric and neonatal outcomes were collected from medical records. Obstetric outcomes 

included pregnancy complications (GDM and gestational hypertensive disorders) and delivery 

related outcomes (induction of labor, epidural analgesia, oxytocin augmentation, duration of labor, 

mode of delivery, rupture degree 3 and 4, postpartum hemorrhage). Gestational hypertensive 

disorders were defined as gestational hypertension, preeclampsia, HELLP syndrome or eclampsia. 

Total duration of labor included the time from the active phase (starting when cervix was dilated 4 

cm and the woman had regular contractions) until the baby was born. The active second stage was 

defined as the time of active pushing. Neonatal outcomes included GA at delivery, premature 
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delivery (GA<37+0 weeks), birth weight, birth length, birth weight z-score, small for gestational age 

(SGA), LGA and Apgar score (5 min). Birth weight was transformed to a z-score, and SGA (<10th 

percentile) and LGA (>90th percentile)28 were defined for a Danish standard population and 

calculated from the Marsal formula,30 which includes fetal sex, birth weight and GA.  

 

Statistical analysis 

Sample size calculations for the primary outcome of the study (MVPA from randomization to GA 

28+0-6 weeks) and the secondary outcome GWG were performed (statistical analysis plan 

available with trial registration at clinicaltrials.gov). Data are presented as means ± SD for 

approximately symmetric distributions, median and interquartile ranges (IQR) for asymmetric 

distributions, and frequencies and proportions for categorical data. Estimated effect sizes are 

presented with 95% confidence intervals [95% CI]. Statistical analyses were performed using R31 

and statistical significance was defined as p-value below 5%.  

 

Analysis of GWG was based on the intention-to-treat principle (ITT) including all randomized 

participants. Trajectories of observed gestational weights during pregnancy was modeled by a 

mixed effects model featuring an intercept constrained to be equal across groups due to the 

randomized design.32 Group-specific change-points were included in the model to allow for a 

piece-wise linear relationship with two different slopes over time in each of the groups. This led to a 

total of ten fixed effects in the model consisting of the common intercept and two different slopes 

and the change-point for each of the three groups. Normal distributed random effects were 

included at the subject level as intercepts and the two slopes with an unstructured covariance 

matrix. The model was implemented in Stan33 and estimated using Markov-Chain Monte Carlo in 

four parallel chains each running for 10,000 iterations with half of them used for warm-up. A 

uniform distribution between 50 and 250 days was used as priors for the change-points. The fitted 

model was subsequently applied to predict individual weights at predetermined timepoints. 
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We used the randomized controlled trial design to investigate differences between groups and an 

observational design combining all participants independent of group allocation to investigate the 

associations of prenatal PA per se. Between-group comparisons of estimated GWG after each 

trimester were performed using analysis of variance (ANOVA). A sensitivity analysis was 

conducted using linear regression to investigate total GWG in each group before versus during 

COVID-19, where the intervention groups received physical and online interventions, respectively. 

Another sensitivity analysis using ANOVA included only participants, whose weight were measured 

at the hospital, to investigate the influence of weight measurements being obtained by the 

calibrated scale at the hospital versus via the participant’s own scales at home. For obstetric and 

neonatal outcomes, differences between groups were tested with Pearson’s χ² test for categorical 

variables, ANOVA for symmetrically distributed variables, and Kruskal-Wallis test for 

asymmetrically distributed variables. We used a two-way ANOVA to investigate the effects of 

prepregnancy BMI and group allocation on total GWG. Fisher’s Exact test was used to compare 

number of participants with total GWG within versus outside (below and above) IOM 

recommendations between groups. Post-hoc pairwise comparisons were performed using 

Pearson’s χ² test with Holm-corrected p-values, Tukey’s method, or Wilcoxon rank sum test with 

Holm-corrected p-values for categorical, symmetrically distributed, and asymmetrically distributed 

variables, respectively.  

 

Associations between PA measures and total GWG among all participants were performed using 

linear regression. PA measures were the average values from randomization to delivery day for 

participants who delivered at GA ≤ 40+0 weeks, and from randomization to GA 40+0 weeks for 

participants who were lost to follow up before delivery or delivered at GA > 40+0 weeks. 
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Results 

We included 220 participants from GA 6+1–15+0 weeks and randomized 219 to CON (n=45), EXE 

(n=87) and MOT (n=87) (Figure 1). Maternal baseline characteristics are presented in Table 1. All 

219 participants were included in the analysis of GWG and pregnancy complications. From 

randomization to delivery, 19% of the participants were lost to follow up, thus data from 178 

participants (CON: n=34; EXE: n=74; MOT: n=70) were included in the analysis of delivery related 

and neonatal outcomes. Lost to follow up rate did not differ between groups. Adverse events and 

serious adverse events did not differ between groups and the interventions did not seem to 

influence mother or offspring negatively. Adherence to EXE and MOT was on average 1.3 

sessions per week [1.1;1.5] and 5.2 [4.7;5.7] out of seven pregnancy counselling sessions, 

respectively.  
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Figure 1. Inclusion, randomization, allocation and completion of the FitMum study reported in accordance with the 

CONSORT (Consolidated Standards of Reporting Trials) guidelines.55 CON; Control, EXE; Structured supervised 

exercise training, MOT; Motivational counselling on physical activity. The figure was created with BioRender.com. 
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Table 1. Maternal baseline characteristics 

 Characteristic ALL                    CON                  EXE                   MOT             

Number of participants n=219 n=45 n=87 n=87 

Age, years 31.5 ± 4.3 32.0 ± 4.6 31.1 ± 4.3 31.7 ± 4.1 

Prepregnancy BMI, kg/m2* 24.1 (21.8-28.7) 23.5 (21.3-26.8) 25.2 (21.6-29.8) 24.1 (22.4-28.9) 

Gestational age, weeks (median) 12.9 (9.4-13.9) 12.9 (9.7-13.9) 12.6 (9.3-13.7) 12.9 (9.6-13.9) 

Gestational age, weeks (mean) 11.7 ± 2.5 11.9 ± 2.6 11.7 ± 2.4 11.8 ± 2.4 

Parity, nulliparous, n (%) 82 (37%) 16 (36%) 40 (46%) 26 (30%) 

Education level, n (%)**      

     chool ≥1  years 191 (87%) 41 (91%) 74 (85%) 76 (87%) 

    Further education ≥3 years 175 (80%) 33 (73%) 73 (84%) 69 (79%) 

Employed/studying, n (%) 199 (91%) 39 (87%) 83 (95%) 77 (89%) 

Smoking, n (%)     

    During pregnancy 2 (1%) 0 (0%) 1 (1%) 1 (1%) 

    Quit smoking before pregnancy 27 (12%) 6 (13%) 12 (14%) 9 (10%) 

 

Baseline characteristics in the randomization groups. * Prepregnancy BMI; n=218 (CON; n=45, EXE; n=86, MOT; n=87). 

**  chool ≥1  years corresponds to high school, and further education ≥3 years corresponds to university degree 

(bachelor or master level). Data are mean ± SD, median (IQR) and n (%). No statistical comparisons have been 

performed on baseline characteristics in accordance with CONSORT recommendations. CON; Control, EXE; Structured 

supervised exercise training, MOT; Motivational counselling on physical activity, BMI; Body mass index, IQR; 

interquartile range. 
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Gestational weight gain after each trimester  

Estimated GWG did not differ between groups at GA 12+0 weeks (p=0.310) or GA 28+0 weeks 

(p=0.396) (Figure 2A-B). Total GWG (GWG at GA at 40+0 weeks) was 14.9 kg [13.6;16.1] in CON, 

15.7 kg [14.7;16.7] in EXE and 15.0 kg [13.6;16.4] in MOT and did not differ between groups 

(p=0.538) (Figure 2C). Pairwise comparisons of total GWG showed no differences in total GWG 

between MOT and EXE (-0.7 kg [-2.6;1.3], p=0.710), MOT and CON (0.2 kg [-2.0;2.3], p=0.985), or 

EXE and CON (0.8 kg [-1.1;2.7], p=0.562). Figure 2D-F illustrates the estimated relationship 

between self-reported and measured body weight observations (dots) and predicted body weights 

by the mixed effects model (lines) for all individuals in the three groups.  

 

 

Figure 2. Gestational weight gain (GWG) for all participants (n=219) after first trimester/GA 12+0 weeks (A), second 

trimester/GA 28+0 weeks (B), and third trimester/GA 40+0 weeks (total GWG) (C). Self-reported and measured weights 

(dots) and predicted weights by mixed effects model (lines) for all individuals throughout pregnancy in the three groups 

(D-F). ANOVA was used for A-C and showed no differences between groups at GA 12+0 weeks (p=0.310), GA 28+0 

weeks (p=0.396) and GA 40+0 weeks (p=0.538). CON; Control, EXE; Structured supervised exercise training, MOT; 

Motivational counselling on physical activity, GWG; Gestational weight gain, GA; Gestational age 



Paper 2, page 15 

 

A complete case analysis of GWG at delivery calculated as measured weight at delivery (available 

for n=131) minus self-reported prepregnancy weight showed no difference between groups 

(p=0.612) (Figure S.1). Sensitivity analyses showed higher total GWG (4.7 kg [1.6;7.8], p=0.003) in 

MOT during  COVID-19 compared with before COVID-19, but no differences were found in EXE 

(1.6 kg [-0.8;4.0], p=0.184) and CON (-1.2 kg [-4.3;1.9], p=0.425). We found no between-group 

differences (p=0.537) in total GWG among participants, whose weight were measured at the 

hospital only, similarly to the ITT results. 

 

Obstetric and neonatal outcomes  

Overall, apart from the number of unassisted vaginal deliveries and GA at delivery, none of the 

obstetric and neonatal outcomes differed between groups (Table 2 and 3). Overall, unassisted 

vaginal deliveries differed between groups (CON: 88%, EXE: 81%, MOT: 69%, p=0.04987), 

however results of Holm-corrected post-hoc pairwise comparisons showed no differences between 

any of the groups (Table 2). GA at delivery differed between groups (p=0.048) and Holm-corrected 

post-hoc pairwise comparisons showed that EXE had higher GA at delivery compared to MOT 

(EXE: 40.6 weeks (39.9-41.3), MOT: 40.0 weeks (39.3-40.9), p=0.038) (Table 3).  
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Table 2. Obstetric outcomes 

 Outcome ALL CON EXE MOT p-value 

Pregnancy complications n=219 n=45 n=87 n=87 
 

GDM, n (%) 13 (6%) 2 (4%) 5 (6%) 6 (7%) 0.934a 

Gestational hypertensive 

disorders, n (%)*  
12 (6%) 2 (4%) 5 (6%) 5 (6%) 1.000a 

Delivery related outcomes n=178 n=34 n=74 n=70   

Induction of labor, n (%) 53 (30%) 11 (32%) 22 (30%) 20 (29%) 0.925a 

Mode of delivery, n (%) 
    

  

    Unassisted vaginal 138 (78%) 30 (88%) 60 (81%) 48 (69%) 0.050a# 

    Instrumental assisted 

    vaginal 
8 (5%) 1 (3%) 1 (1%) 6 (9%) 0.103a 

    Planned caesarean section 11 (6%) 1 (3%) 5 (7%) 5 (7%) 0.791a 

    Emergency caesarean 

    section 
21 (12%) 2 (6%) 8 (11%) 11 (16%) 0.333a 

Epidural analgesia, n (%) 58 (33%) 9 (27%) 25 (34%) 24 (34%) 0.698a 

Oxytocin augmentation, n (%) 46 (26%) 5 (15%) 24 (32%) 17 (24%) 0.138a 

Rupture degree 3 + 4, n (%)** 8 (5%) 1 (3%) 3 (4%) 4 (6%) 0.805a 

Postpartum hemorrhage, ml 350 (250-508) 300 (200-445) 350 (250-593) 400 (250-540) 0.212b 

Postpartum hemorrhage  

> 1000 ml, n (%) 
19 (11%) 2 (6%) 11 (15%) 6 (9%) 0.300a 

Duration of labor nulliparous     
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    Total duration  

    vaginal delivery, min** 
443 (273-617) 523 (199-582) 481 (363-678) 298 (198-488) 0.163b 

    Duration of active second 

    stage labor, min** 
41 (22-65) 53 (16-70) 43 (23-67) 34 (21-44) 0.436b 

    Active second stage labor 

    >60 min, n (%)** 
15 (27%) 3 (27%) 9 (31%) 3 (20%) 0.797a 

Duration of labor multiparous  
      

    Total duration  

    vaginal delivery, min** 
150 (86-262) 126 (102-254) 152 (79-277) 160 (88-262) 0.994b 

    Duration of active second 

    stage labor, min** 
13 (7-19) 13 (6-20) 14 (7-19) 11 (6-19) 0.849b 

    Active second stage labor  

    >30 min, n (%)** 
11 (13%) 3 (16%) 2 (7%) 6 (16%) 0.592a 

 

Obstetric outcomes in the randomization groups. Pregnancy complications are reported for all randomized participants 

(n=219) and delivery related outcomes are reported for participants still enrolled in the study at delivery (n=178). * 

Defined as preeclampsia, gestational hypertension, HELLP or eclampsia. ** For some variables the total number is lower 

due to missing values: For nulliparous women: Total duration of vaginal deliveries; n=49 (CON; n=10, EXE; n=24, MOT; 

n=15), duration of active second stage labor; n=55 (CON; n=11, EXE; n=29, MOT; n=15), active second stage labor >60 

min; n=55 (CON; n=11, EXE; n=29, MOT; n=15), for multiparous women: total duration of vaginal deliveries; n=81 (CON; 

n=19, EXE; n=27, MOT; n=35), duration of active second stage labor; n=86 (CON; n=19, EXE; n=29, MOT; n=38), active 

second stage labor >30 min; n=86 (CON; n=19, EXE; n=29, MOT; n=38), rupture degree 3 + 4;  n=173 (CON; n=31, 

EXE; n=72, MOT; n=70). Data are mean ± SD, median (IQR) and n (%). aPearson’s χ² test, bKruskal-Wallis test. 

#p 0.04    but results of pairwise comparisons by Pearson’s χ² tests with Holm-corrected p-values were inconclusive. 

CON; Control, EXE; Structured supervised exercise training, MOT; Motivational counselling on physical activity, GDM; 

Gestational diabetes mellitus.  
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Table 3. Neonatal outcomes 

 Outcome 

 

ALL  

 

 

CON  

 

 

EXE  

 

 

MOT  

 

p-value 

Number of participants n=178 n=34 n=74 n=70  

Gestational age delivery, 

weeks (median) 
40.4 (39.4-41.1) 40.2 (38.8-41.3) 40.6 (39.9-41.3) 40.0 (39.3-40.9) 0.048b# 

Gestational age delivery, 

weeks (mean) 
40.1 ± 1.6 39.8 ± 1.9 40.4 ± 1.2 39.8 ± 1.7  

Premature delivery 

(GA<34), n (%) 
3 (2%) 1 (3%) 0 (0%) 2 (3%) 0.309a 

Premature delivery  

(GA 34+0-36+6), n (%) 
3 (2%) 2 (6%) 1 (1%) 0 (0%) 0.093a 

Birth weight, g 
3715  

(3289-3979) 

3630  

(3024-3899) 

3768  

(3410-4069) 

3665  

(3266-3880) 
0.083b 

Birth length, cm* 52 (51-53) 52 (51-54) 53 (51-54) 52 (51-53) 0.354b 

Birth weight adjusted for 

GA at delivery and sex,  

z-score 

0.10 ± 1.0 -0.02 ± 1.0 0.17 ± 1.0 0.09 ± 1.0 0.648c 

SGA (<10th percentile),  

n (%) 
15 (8%) 4 (12%) 3 (4%) 8 (11%) 0.208a 

LGA (>90th percentile),  

n (%) 
18 (10%) 2 (6%) 7 (10%) 9 (13%) 0.526a 

5-min apgar score <7,  

n (%)  
1 (1%) 0 (0%) 0 (0%) 1 (1%) 0.580a 

 

Neonatal outcomes in the randomization groups. * Birth lenght; n=177 (CON; n=34, EXE; n=74, MOT; n=69). Data are 

mean ± SD, median (IQR) and n (%). aPearson’s χ² test, bKruskal-Wallis test, cAnalysis of variance (ANOVA). #EXE vs. 

MOT (p=0.038) (pairwise Wilcoxon rank sum test with Holm-corrected p-value). CON; Control, EXE; Structured 

supervised exercise training, MOT; Motivational counselling on physical activity, GA; Gestational age, SGA; Small for 

gestational age infants, LGA; Large for gestational age infants, IQR; interquartile range.  
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Gestational weight gain in relation to prepregnancy BMI and IOM recommendations 

Stratification of participants into subgroups based on their prepregnancy BMI resulted in 122 

women with normal weight (CON: n=30; EXE: n=43; MOT: n=49), 52 women with overweight 

(CON: n=10; EXE: n=23; MOT: n=19) and 45 women with obesity (CON: n=5; EXE: n=21; MOT: 

n=19). Overall, women with obesity had lower total GWG compared to women with normal weight 

(-5.2 kg [-7.2;-3.2], p<0.001) and overweight (-5.1 kg [-7.4;-2.7], p<0.001) (Figure 3A). Participants 

with obesity in MOT had lower total GWG compared to both all three normal weight groups (CON: -

5.9 kg [-10.4;-1.5], p=0.001; EXE: -8.2 kg [-12.4;-4.0], p<0.001; MOT: -7.3 kg [-11.4;-3.2], p<0.001) 

and to all three overweight groups (CON: -6.7 kg [-12.7;-0.8], p=0.013; EXE: -6.4 kg [-11.1;-1.6], 

p=0.001; MOT: -8.4 kg [-13.4;-3.5], p<0.001). Likewise, participants with obesity in EXE had lower 

total GWG compared to EXE participants with normal weight (-4.4 kg [-8.4;-0.3], p=0.023) (Figure 

3A). We found no differences between CON, EXE, and MOT in total GWG within versus outside 

IOM recommendations for neither women with normal weight (p=0.230), overweight (p=0.275) nor 

obesity (p=0.730) (Figure S.2). 
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Figure 3. Total gestational weight gain (GWG) for participants with normal weight, overweight and obesity in CON, EXE 

and MOT (A) and associations between MVPA (min/week) and total GWG (B), steps per day and total GWG (C), and 

active kilocalories per day and total GWG (D) for all participants (n=219). A, * represents differences compared with 

normal weight (p<0.001) and overweight (p<0.001). # represents differences compared with all normal weight and 

overweight groups (p<0.05). $ represents differences compared with normal weight EXE participants (p=0.023) (two-way 

ANOVA and Tukey’s method). B-D, associations between MVPA (min/week) and total GWG, as well as active 

kilocalories per day and total GWG differed (MVPA: p=0.034; Active kilocalories: p=0.003) between women with obesity 

and normal weight, but associations between steps per day and total GWG did not (p=0.685) (linear regression). Data 

points are visualized based on average MVPA, steps and active kilocalories of 25 imputed data sets (B-D). CON; 

Control, EXE; Structured supervised exercise training, MOT; Motivational counselling on physical activity, GWG; 

Gestational weight gain, BMI; Body mass index, MVPA; moderate to vigorous intensity physical activity. 
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Observational associations with prenatal physical activity per se 

We investigated if PA was associated with total GWG independent of group allocation. We found 

no associations between any of the PA measures and total GWG (MVPA: slope -0.01 [-0.02;0.01], 

p=0.363;  teps: slope 0.14∙10-3 [-0.03∙10-2;0.06∙10-2], p=0.537; Active kilocalories: slope -0.09∙10-2 

[-0.05∙10-1;0.03∙10-1], p=0.637) (Figure S.3A-C). However, when the participants were stratified 

according to their prepregnancy BMI we found that associations between both MVPA and total 

GWG (Figure 3B) as well as active kilocalories and total GWG (Figure 3D) differed between 

women with obesity and normal weight (MVPA: difference between slopes -0.04 [-0.07;-0.03∙10-1], 

p=0.034; Active kilocalories: difference between slopes -0.01 [-0.02;-0.04∙10-1], p=0.003), but 

associations between steps and total GWG did not (difference between slopes 0.0 ∙10-2 [-0. 0∙10-

3;0.1 ∙10-2], p=0.685) (Figure 3C). Associations between neither MVPA, steps nor active 

kilocalories and total GWG differed (MVPA: difference between slopes -0.01 [-0.05;0.02], p=0.492; 

 teps: difference between slopes 0.0 ∙10-2 [-0. 4∙10-3;0.1 ∙10-2], p=0.729; Active kilocalories: 

difference between slopes -0.01, [-0.01;0.04∙10-1], p=0.252) between women with overweight and 

normal weight. Higher MVPA and active kilocalories were associated with higher total GWG within 

women with normal weight (M PA: slope 0.0  [0.61∙10-3;0.05], p=0.044; Active kilocalories: slope 

0.01 [0.0 ∙10-1;0.01], p=0.003), whereas these associations were not present within women with 

obesity (MVPA: slope -0.01 [-0.03;0.01], p=0.288; Active kilocalories: slope -0.05∙10-1 [-

0.01;0.0 ∙10-1], p=0.145), but had negative slopes, meaning that increasing PA decreases total 

GWG. 
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Comment 

We found no overall effect of neither structured supervised EXErcise training nor MOTivational 

counselling on GWG or obstetric and neonatal outcomes in healthy pregnant women compared to 

standard care. Hence, our predefined hypotheses that GWG would be lower in EXE compared to 

MOT, and in MOT compared to CON were rejected. Importantly, the interventions did not seem to 

influence mother or offspring negatively, which is in line with the literature.34 Women with obesity in 

EXE and MOT had lower total GWG compared to EXE and MOT women with normal weight. 

Further, associations between PA and total GWG differed between women with obesity and normal 

weight, with slopes being in negative and positive directions, respectively. Interestingly, this could 

indicate a differential influence of BMI on the association between PA and total GWG and that 

women with obesity may be more susceptible to beneficial effects of exercise interventions than 

women with normal weight, in line with previous studies.1,21,24,35 Establishing effective interventions 

to reduce obesity, excessive GWG and associated adverse maternal36–38 and infant36,38–40 

outcomes among pregnant women with overweight and obesity is crucial, since excessive weight 

gain is more prevalent among women with obesity36,41. 

 

The low number of participants with obesity in CON possibly explains why an intervention effect of 

MOT on total GWG compared to CON in women with obesity could not be confirmed. The lower 

total GWG among women with obesity compared to women with normal weight could be due to 

recommendations of GWG26 being dependent on prepregnancy BMI and that women with obesity 

tend to gain less during pregnancy. However, we observed no difference in total GWG between 

women with obesity and normal weight in CON, which however might be due to the low number of 

CON participants with obesity.  

 

It is noteworthy that our interventions were not effective on reducing GWG compared to CON in 

our entire study population that were normal weight on average, where more than 50% of the 
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participants with normal and overweight in EXE and MOT had excessive GWG26. This is in contrast 

with several studies showing reduced GWG compared to standard care after prenatal exercise in 

healthy3 and normal weight women.42 However, some studies also found no effect of exercise on 

GWG in women with normal weight.17,43 We found no effects of our interventions compared to CON 

on obstetric and neonatal outcomes. This is in contrast to most studies reporting a protective effect 

of prenatal exercise on GDM and hypertensive disorders3 and reduced preterm delivery, SGA and 

LGA8 in women with normal weight, overweight and obesity. However, similar to our study, other 

studies found no effects of prenatal exercise on GDM, preeclampsia, preterm delivery and birth 

weight.43–45 The literature is inconsistent regarding effects of prenatal exercise on mode of delivery, 

induction of labor and epidural analgesia.4,46,47 Some studies mention rather low adherence to their 

exercise interventions as a possible explanation for the lack of exercise effect. Likewise, we only 

had moderate adherence to interventions, which is a weakness for investigation of health 

outcomes in our study, given the importance of achieving a certain amount of PA to obtain 

beneficial effects.48,49 However, none of the PA measures were per se associated with total GWG. 

Further investigation is needed on whether maternal body composition might be improved in EXE 

or MOT compared to CON, since exercise-induced improvement of body composition has been 

shown in both pregnant50 and non-pregnant populations.51,52 

 

Ideally, GWG calculation is based on last measured available weight in pregnancy.26 Most studies 

calculate GWG based on a weight measured at the last pregnancy visit,2,3,35 and only few studies 

have reported GWG all the way to delivery.53,54 A strength of the current study is that the last 

weight measurement is obtained at delivery enabling us to estimate GWG for the entire pregnancy 

period by a new method accounting for individual differences in GA at delivery. We found a very 

good fit between weight observations and predicted weights by the statistical model, supporting 

use of our method to estimate GWG. The method can advance state-of-the-art in the obstetric 

research field. 
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Conclusion 

Overall, neither structured supervised EXErcise training nor MOTivational counselling on PA during 

pregnancy affected GWG as estimated by a novel method or obstetric and neonatal outcomes in 

healthy pregnant women compared to standard care. However, women with obesity in both 

intervention groups gained less weight compared to women with normal weight within the same 

intervention groups. Further, associations between PA and total GWG differed between women 

with obesity and normal weight. This indicates that pregnant women with obesity may be 

susceptible to beneficial effects of exercise.   
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Figure S.1: Complete case analysis of gestational weight gain at delivery including participants with available weight 

measurements from delivery only (n=131). ANOVA showed no difference between groups (p= 0.612). CON; Control, 

EXE; Structured supervised exercise training, MOT; Motivational counselling on physical activity. 
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Figure S.2: Total gestational weight gain above, within and below IOM recommendations for participants with normal 

weight, overweight and obesity in CON, EXE, and MOT. No differences between groups in total gestational weight gain 

within versus outside (below and above combined) IOM recommendations for neither women with normal weight 

(p=0.230), overweight (p= 0.275) nor obesity (p= 0.730) (Fisher’s Exact tests). IOM; Institute of Medicine, GWG; 

Gestational weight gain, CON; Control, EXE; Structured supervised exercise training, MOT; Motivational counselling on 

physical activity. 
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Figure S.3: Associations between MVPA (min/week) and total gestational weight gain (GWG) (A), steps per day and 

total GWG (B), and active kilocalories per day and total GWG (C) for all participants (n=219). Data points are visualized 

based on average MVPA, steps and active kilocalories of 25 imputed data sets. A linear regression analysis showed no 

associations between MVPA (p=0.363), steps (p=0.537), active kilocalories (p=0.637) and total GWG, respectively. 

GWG; Gestational weight gain, MVPA; moderate to vigorous intensity physical activity. 
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Abstract 

Maternal exercise during pregnancy is associated with beneficial effects on offspring health, and 

exercise-induced adaptations in breast milk have recently been proposed as an underlying 

mechanism. Metabolomic and lipidomic profiling was performed on human breast milk samples of 

99 mothers, 7-14 days after birth to investigate the effects of various exercise interventions during 

pregnancy or a control group. Overall, some metabolites and lipids in human breast milk changed 

after both structured supervised exercise training and motivational counselling on physical activity  

during pregnancy interventions compared to control. Moreover, some of the metabolites and lipids 

correlated with physical activity level. However, prenatal exercise interventions did not elicit major 

metabolite or lipid changes compared to control. The data indicate that maternal exercise during 

pregnancy may induce changes to the human breast milk metabolome and lipidome, which in part 

could explain improved offspring metabolic health.   
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Introduction 

Maternal exercise during pregnancy is an effective tool to improve metabolic health of offspring in 

animal models (1–3), but it is unclear whether the same improvement applies to humans. Prenatal 

exercise has been shown to normalize offspring birth weight in humans (4,5), but conflicting 

evidence exists regarding the long-lasting effects of prenatal exercise on offspring obesity-related 

outcomes (6,7). A recent systematic review and meta-analysis indicated no overall association 

between prenatal lifestyle interventions, including physical activity (PA), and weight and body mass 

index (BMI) in offspring aged one month to seven years (6), whereas maternal prenatal exercise has 

been associated with lower risk of being overweight/obese among 5,125 eight-year-old offspring 

compared to offspring of sedentary mothers (7). Thus, maternal exercise might optimize offspring 

health and decrease the risk for development of cardiovascular and metabolic diseases in humans, 

but the underlying mechanisms remain incompletely understood. 

Recent research has proposed exercise-induced adaptations to breast milk as a possible mechanism 

underlying the beneficial effects of prenatal exercise on offspring health (8,9). Harris et al. 

identified an exercise-induced increase in the oligosaccharide 3′-sialyllactose (3′-SL) in breast milk 

in mice and showed that the beneficial effects of maternal exercise on offspring health were 

mediated by 3′-SL in breast milk. Further, they showed a positive correlation between PA and 3′-SL 

content in breast milk in humans (8). Additionally, Wolfs et al. reported that the lipokine (lipid 

compounds that are predominantly secreted from adipose tissue and can act as signaling molecules 

and influence systemic metabolism (10,11)) 12,13-dihydroxy-9Z-octadecenoic acid (12,13-

diHOME) was increased in human breast milk after an acute bout of moderate intensity exercise, 

and that breast milk abundance of 12,13-diHOME was inversely associated with several measures 

of infant adiposity (9). These intriguing findings call for further investigation of whether exercise 

training during pregnancy induces changes in human breast milk composition.  
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To expand our understanding on how various prenatal exercise interventions affect the human 

breast milk metabolome and lipidome, we investigated the effects of structured supervised exercise 

training (EXE) and motivational counselling on PA (MOT) compared to standard care (CON) 

during pregnancy on the human breast milk metabolome and lipidome in the early postpartum 

period. 
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Methods 

Participants and study procedures 

Participants (n=99) were pregnant women enrolled in FitMum, a single-site randomized controlled 

trial (ClinicalTrials.gov #NCT03679130) conducted in 2018-2021 at the Department of Gynecology 

and Obstetrics at Nordsjaellands Hospital, Hillerod, Denmark (12). In brief, the eligibility criteria 

included being healthy, gestational age (GA) ≤ 15+0 weeks, inactive during early pregnancy 

(structured exercise at moderate to vigorous intensity < one hour/week) and without pre-existing or 

ongoing obstetric or medical complications, or alcohol/drug abuse. Demographic information was 

obtained at inclusion and obstetric (e.g. gestational diabetes mellitus and gestational hypertensive 

disorders) and neonatal outcomes (birth weight and birth length) were collected from medical 

records. Prepregnancy BMI (kg/m2) was calculated based on self-reported prepregnancy weight and 

height. Gestational weight gain at GA 40+0 weeks was estimated based on predicted body weights 

from a mixed effects model as described previously (reference to another FitMum paper in review 

in AJOG will be inserted when published, before submission of this paper) and excessive 

gestational weight gain was defined according to the Institute of Medicine’s recommendations (13). 

Postpartum maternal weight was measured to the nearest 0.1 kg on a calibrated electronic scale 

(SECA 799) 7-14 days after delivery (the day of breast milk collection). Small for gestational age 

(<10th percentile) and large for gestational age (>90th percentile) (14) were defined according to a 

Danish standard population and calculated from the Marsal formula (15), which includes fetal sex, 

birth weight and GA at delivery. All participants wore an activity tracker (Garmin Vivosport) that 

measured PA, including moderate to vigorous intensity PA (MVPA, min per week), steps (per day), 

and active min (everything beyond sedentary time per day), continuously from inclusion to 

delivery. Randomization to either CON, EXE, or MOT followed a one-week baseline period (latest 

GA 16+0). Participants in the EXE intervention were offered supervised exercise training at 
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moderate intensity three times a week. Participants in the MOT intervention were offered three 

group and four individual motivational counselling sessions on PA during pregnancy and one 

weekly SMS-reminder to increase PA level. During the Covid19-pandemic (from March 11th, 2020 

and throughout the intervention period) exercise training sessions and motivational counselling 

sessions were conducted online using Zoom Cloud Meetings or by telephone. In a period, test visits 

were also conducted online and no breast milk samples were collected (12). The study was 

approved by the Danish National Committee on Health Research Ethics (#H-18011067) and the 

Danish Data Protection Agency (#P-2019-512). Written informed consent was obtained from all 

participants. 

 

Collection of breast milk 

Participants collected a milk sample from a single feed at the first feeding after 6:00 AM at home 7-

14 days after delivery. The breast was cleaned with a wet washcloth before pumping. One breast 

was expressed fully into a clean bottle using a manual breast pump (Medela Harmony breast pump). 

The bottle was shaken for 30 sec to account for any variation between fore- and hindmilk, and 2.5 

mL was collected in a plastic vial and immediately stored in the participant’s own freezer at around 

-18 °C for approximately eight hours. Milk samples were kept frozen and transported in insulated 

bags to the hospital for storage at -80 °C. Samples were shipped to the Novo Nordisk Foundation 

Center for Basic Metabolic Research, University of Copenhagen, Denmark, for metabolomics and 

lipidomics analysis. Eight breast milk samples were not obtained exactly as described above, since 

they were stored at around -18 °C for longer time (three weeks), obtained on day five and 15 after 

birth (not within the 7-14 days postpartum interval), or from women who delivered prematurely, or 

experienced challenges obtaining the sample. However, these samples did not appear as outliers in 
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our metabolomics and lipidomics analyses and hence, data from all participants were included in 

the analysis.  

 

Metabolomics and lipidomics analysis  

Chemicals and reagents 

High-performance liquid chromatography (HPLC)-grade water, acetonitrile, 2-propanol, and 

methanol (MeOH) were purchased from Honeywell (Charlotte, NC, USA). Labeled standards were 

acquired from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA), Sigma-Aldrich (St. 

Louis, MO), and Cayman Chemical (MICH, USA). SPLASH Lipidomix stable isotope labeled 

internal standards were purchased from Avanti (Alabaster, Alabama, USA). ESI-L Low 

Concentration Tune Mix was purchased from Agilent Technologies (Santa Clara, CA, USA). 

Formic acid 99.5+%, Optima™ LC/MS grade was purchased from Fisher Chemical (Pittsburgh, 

PA, USA). Sodium hydroxide solution (1 N) was purchased from Merck (Darmstadt, Germany). 

 

Sample preparation for metabolite and lipid extraction 

For metabolomics analysis, sample preparation has been described elsewhere (16). Briefly, 200 µL 

of each breast milk sample was aliquoted in 1mL Eppendorf tubes and stored in a −80 °C freezer 

until use. The samples were treated with 595 μL of MeOH. For quality control and normalization, a 

5 μL of internal labeled standards mix (10 µg/mL for all) containing octanoyl-L-carnitine-d3, 

butyryl L-carnitine-d3, palmitoyl L-carnitine-d3, glycoursodeoxycholic acid-d4, 

glycochenodeoxycholic acid-d4, taurolithocholic acid-d4, decanoic acid-d19, prostaglandin E2-d4, 

dihomo-γ-linolenic acid-d6, 12S-HETE-d8, and oleic Acid-d17 (1 mg/L) in MeOH was added to the 

extraction solvent. Samples were vortexed and precipitated on ice for 20 min. After precipitation, 

extracts were centrifuged at 14,000 rpm at 4 °C for 15 min for protein precipitation and metabolite 
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extraction. The supernatant (700 μL) containing the polar metabolites was collected in new 2mL 

Eppendorf tubes. A volume of 700 μL of dichloromethane and 50 μL of water was then added to the 

supernatant. Samples were vortexed and left at room temperature for 10 min. A volume of 620 μL 

of the aqueous layer was then collected into a new glass HPLC vial containing a 300 µL glass 

insert. Samples were evaporated with a gentle stream of nitrogen to dryness using Zipvap 48 

position evaporator heater (Terre Haute, IN, USA). The dried samples were redissolved in 50 μL of 

water. 

For lipidomics analysis, 10 µL of each breast milk sample was aliquoted in 1 mL Eppendorf tubes 

and stored in a −80 °C freezer until use. Samples were treated with 10 µL 0.9% w/v NaCl, and 120 

µL chloroform/methanol (2:1) containing 14 internal standards (SPLASH Lipidomix stable isotope 

labeled internal standards; 2.5 µg/mL for all). The mixture was vortexed and precipitated on ice for 

30 min followed by centrifugation at 1000g for 3 min at 4 °C. Sixty µL supernatant of the lipid-

containing chloroform phase (lower level) was extracted to a glass HPLC vial containing 60 µL 

chloroform: methanol (1:1). 

 

Quality control 

A pooled sample (quality control sample, QC) was prepared by mixing equal volumes of each 

breast milk sample for both the metabolomics and lipidomics extracts. To condition the column, the 

QC sample was injected at least three times before initiating the run. Then the sample was 

reinjected every 10 injections, and at the end of the run to assess instrument stability and analyte 

reproducibility. An equal volume of a blank sample consisting of the internal labeled standard mix 

(blank IS) in MeOH and a performance check (PEC) sample were also analyzed. For metabolomics 

analysis, the PEC consisted of reserpine, Leu-Enk, and Val-Tyr-Val in MeOH and for the 

lipidomics analysis, the PEC consisted of the LIGHTSPLASH primary standard mix (Avanti; 
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Alabaster, Alabama, USA). The blank IS and PEC were randomly inserted among the real sample 

queue for monitoring the performance of the analytical platform. The analytical performance was 

evaluated by calculating the technical precision within each blank IS & PEC sample for retention 

time (RT), mass accuracy, and MS intensity. In this way, the precision of data was based on within 

run precision data of all standards present in the blank IS and PEC solution, while for the QC 

plasma pool endogenous metabolites and lipids were assessed both in positive and negative modes. 

The analytical reproducibility in terms of intensities of the detected m/z features was evaluated by 

calculating the coefficient of variation (% CV) of detected peaks in QC samples. 

 

Analysis by Ultrahigh Performance Liquid Chromatography mass spectrometry (UHPLC-MS) 

Metabolomics and lipidomics profiling were performed using an Ultrahigh Performance Liquid 

Chromatography (UHPLC) system (Agilent 1290 Infinity II) connected to a Bruker timsTOF Pro™ 

instrument equipped with trapped ion mobility spectrometer (TIMS) coupled to a hybrid 

quadrupole, time-of-flight mass spectrometer (TOF-MS; Bruker, Bremen, Germany). Ions were 

generated in both positive and negative electrospray ionization mode. The ESI source used 10 

L/min of drying gas at a temp of 220 °C. The ESI was set at 4500 V and 3600 V capillary voltage 

for pos and neg mode, respectively, and a 2.2 bar nebulizer pressure. Detection of the mass/charge 

ratio (m/z) of ions was set from 50 to 1000 over 17 min. To facilitate the compound identifications, 

QC samples were analyzed by auto MS/MS. The absolute threshold was set to 1000 counts. MS and 

MS/MS spectra acquisition rates were set to 2 and 4 Hz, respectively, with a total cycle time of 1 

sec for precursor ions collection. The collision energy in MS/MS varied between 10 eV to 60 eV.  

For metabolomics analysis, the samples were randomized and analyzed using reversed-phase 

ACQUITY UPLC HSS T3 Column, 100Å, 1.8 µm, 2.1 mm X 100 mm (Waters, Milford, MA). The 

column and auto-sampler temperatures were maintained at 40 °C and 6 °C, respectively. Solvent A 
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consisting of 0.1% HCOOH v/v in H2O and solvent B consisting of 0.1% HCOOH v/v in 

acetonitrile and isopropanol (IPA; 3:1, v/v) were used as mobile phases. The injection volume and 

flow rate were 3 μL and 0.4 mL/min, respectively. The mobile phase gradient was programmed as 

follows: a linear gradient from 3% B to 97% B over 9 min, 97% B for 5 min followed by 3% B in 

0.5 min, and equilibration at 3% B for 2.5 min (17). 

For lipidomics analysis, the samples were randomized and analyzed using reversed-phase 

ACQUITY UPLC BEH C18 Column, 130Å, 1.7 µm, 2.1 mm X 100 mm (Waters, Milford, MA). 

The column and auto-sampler temperatures were maintained at 50 °C and 6 °C, respectively. 

Solvent A consisting of H2O + 1% NH4Ac (1M) + 0.1% v/v HCOOH and solvent B consisting of 

ACN: IPA (1:1, v/v) + 1% NH4Ac (1M) + 0.1% HCOOH (3:1, v/v) were used as mobile phases. 

The injection volume and flow rate were 1 μL and 0.4 mL/min, respectively. The mobile phase 

gradient was programmed as follows: The gradient was: 0-2 min 35-80% B; 2-7 min 80–100% B; 

and 7-14 min 100% B, followed by a 4 min re-equilibration period under the initial conditions (35% 

B) (18). 

 

MS-data processing for metabolomics and lipidomics analysis 

Data acquisition was controlled by the otofControl software version 6.0 and Bruker Compass 

HyStar version 5.0 (Bruker Daltonics, Bremen, Germany). Data processing was performed with 

Bruker Compass Data Analysis 5.2 software and MetaboScape version 5.0 (Bruker Daltonics, 

Bremen, Germany). Molecular features selection, bucketing, filtering, and scaling were performed 

by MetaboScape to generate the peak lists from MS and MS/MS spectra. An internal calibrant of 

Na format injected at the beginning of each analysis was used to calibrate the acquired MS and 

MS/MS data in MetaboScape.  
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Detected molecular features were annotated in two steps. First masses and retention times were 

compared with an in-house library based on authentic standards. Secondly, the recorded MS/MS 

spectra in MetaboScape were annotated using SmartFormula and by comparing with the in-house 

MS/MS spectral library, LipidBlast, Bruker HMDB Metabolite Library, Bruker MetaboBASE 

Personal Library 3.0, MoNA, and MSDIAL-TandemMassSpectralAtlas using a confidence limit of 

5 mDa for parent mass tolerance.   

 

Statistical analysis 

Data are presented as mean ± SD/± SEM/95% confidence intervals [95% CI], median and 

interquartile range (IQR), or frequencies and proportions. Statistical analyses were performed using 

R (19), GraphPad Prism (version 9, GraphPad Software), Metaboanalyst (www.metaboanalyst.ca), 

and Microsoft Excel. Metabolite and lipid relative abundances were log transformed and autoscaled 

to each individual metabolite; further analyses were performed on normalized data. Statistical 

significance was defined as p-value <0.05 and determined by Student’s t-tests or Kruskal-Wallis 

tests with wilcoxon rank sum test with holm-corrected p-values for pairwise comparisons. 

Tendencies were defined as p-values of 0.05-0.1 and marked with parentheses in figures. P-values 

of 0.05 corresponded to -Log10 p-values of 1.3. Linear regression analyses were used for analyses 

of correlations between specific metabolites/lipids in breast milk, prenatal PA measures (MVPA, 

active min, and steps), and postpartum maternal weight. PA data were the average of 25 imputed 

data sets for missing data from randomization to delivery.  

 

 

  

http://www.metaboanalyst.ca/
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Results 

The FitMum study included 220 pregnant women. We obtained breast milk samples from 99 

women 7-14 days after birth (CON: n=18, EXE: n=38, MOT: n=43) and performed untargeted 

metabolomics and lipidomics to investigate the effects of prenatal exercise interventions on early 

postpartum breast milk metabolome and lipidome (Figure 1). Descriptive characteristics for the 

breast milk population are presented in Table 1. Overall, most participants were healthy, without 

pregnancy or delivery related complications. More than 50% had an excessive gestational weight 

gain according to the Institute of Medine’s recommendations. Overall, most offspring were 

delivered full term and had normal anthropometric measures. Neonatal characteristics seemed to be 

similar between the three groups, except from fewer offspring in the EXE group that seemed to be 

born small or large for gestational age. The descriptive characteristics and the distribution of 

participants in the three study groups did not differ compared to the entire study population 

(reference to another FitMum paper in review in AJOG will be inserted when published, before 

submission of this paper). Adherence to EXE and MOT among participants in the breast milk 

population was on average 1.6 [1.3;1.8] sessions/week and 6.5 [6.3;6.8] counselling sessions during 

pregnancy, respectively. The UHPLC–MS untargeted metabolomics and lipidomics analysis 

detected 219 annotated metabolites and 172 annotated lipids, respectively, and 21,434 and 14,278 

non-annotated metabolite and lipid mass features, respectively. Statistical analyses were performed 

on the annotated metabolites and lipids.  
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Figure 1. Inclusion, randomization, allocation, and analyzed breast milk samples in the FitMum study. Breast milk 

samples were obtained from n=18 in CON, n=38 in EXE and n=43 in MOT 7-14 days after delivery. A detailed flow 

diagram of the FitMum study has been published previously (reference to another FitMum paper in review in AJOG 

will be inserted when published, before submission of this paper). CON; Control, EXE; Structured supervised exercise 

training, MOT; Motivational counselling on physical activity. The figure was created with BioRender.com. 
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Table 1. Descriptive characteristics 

 ALL                   

(n=99) 
CON                

(n=18) 
EXE                 

(n=38) 
MOT               

(n=43) 

Age, years 31.1 ± 4.1 31.3 ± 4.0 30.2 ± 3.8 31.9 ± 4.2 

Prepregnancy BMI, kg/m2*** 23.7 (21.6-28.6) 22.6 (20.8-24.7) 23.9 (21.6-28.7) 24.3 (22.3-28.9) 

GA at inclusion, weeks 12.4 (9.3-14.0) 12.4 (9.3-13.1) 11.9 (9.2-13.9) 13.0 (10.2-14.1) 

Parity, nulliparous, n (%) 39 (39%) 7 (39%) 20 (53%) 12 (28%) 

Education level, n (%)*     

    School ≥12 years 89 (90%) 17 (94%) 33 (87%) 39 (91%) 

    Further education ≥3 years 84 (85%) 14 (78%) 32 (84%) 38 (88%) 

Employed/studying, n (%) 92 (93%) 18 (100%) 37 (97%) 37 (86%) 

Smoking, n (%)     

    During pregnancy 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

    Quit smoking before pregnancy 6 (6%) 2 (11%) 3 (8%) 1 (2%) 

Obstetric characteristics     

    GDM, n (%) 7 (7%) 1 (6%) 2 (5%) 4 (9%) 

    Gestational hypertensive 

    disorders, n (%)** 
6 (6%) 0 (0%) 2 (5%) 4 (9%) 

    GWG until GA40+0, kg 14.5 ± 6.1 15.4 ± 5.4 15.1 ± 5.2 13.5 ± 7.1 

    Excessive GWG according to  

    IOM recommendations, n (%) 
52 (53%) 10 (56%) 24 (63%) 18 (42%) 

    GA at delivery, weeks 40.4 (39.7-41.3) 40.3 (39.7-41.4) 40.6 (39.8-41.3) 40.1 (39.7-41.1) 

    Premature delivery  

    (GA<37), n (%) 
3 (3%) 1 (6%) 1 (3%) 1 (2%) 
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    Epidural analgesia, n (%) 29 (29%) 5 (28%) 12 (32%) 12 (28%) 

    Oxytocin augmentation, n (%) 23 (23%) 3 (17%) 11 (29%) 9 (21%) 

    Vaginal delivery, n (%) 80 (81%) 16 (89%) 29 (76%) 35 (81%) 

    Caesarean section, n (%) 19 (19%) 2 (11%) 9 (24%) 8 (19%) 

    Maternal weight 7-14 days 

    postpartum, kg*** 
77.8 ± 15.0 74.1 ± 13.9 78.3 ± 16.4 79.0 ± 14.1 

Neonatal characteristics     

    Birth weight, g 3670 (3270-3910) 3640 (3220-3900) 3690 (3460-3960) 3660 (3210-3900) 

    Birth length, cm 52 (51-53) 52 (51-54) 52 (51-53) 52 (51-53) 

    SGA, n (%) 11 (11%) 3 (17%) 2 (5%) 6 (14%) 

    LGA, n (%) 6 (6%) 1 (6%) 0 (0%) 5 (12%) 

 

Descriptive characteristics in the randomization groups. * School ≥12 years corresponds to high school and further 

education ≥3 years corresponds to university degree (bachelor or master level). ** Defined as preeclampsia, gestational 

hypertension, HELLP or eclampsia. *** For some variables the total number is lower due to missing values: 

Prepregnancy BMI; n=98 (CON; n=18, EXE; n=37, MOT; n=43), maternal weight 7-14 days postpartum; n=98 (CON; 

n=18, EXE; n=38, MOT; n=42). Data are mean ± SD, median (IQR) and n (%). No statistical comparisons have been 

performed on descriptive characteristics in accordance with CONSORT recommendations. CON; Control group, EXE; 

Structured supervised exercise training, MOT; Motivational counselling on physical activity, GA; Gestational age, 

GDM; Gestational diabetes mellitus, GWG; Gestational weight gain, IOM: Institute of Medicine, SGA; Small for 

gestational age, LGA; Large for gestational age, IQR; interquartile range. 
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Metabolites 

Metabolic profiling can provide rapid indications of metabolic perturbations in response to exercise. 

In the present study, two-way hierarchical clustering of normalized metabolites showed differences 

in normalized metabolite abundances in both EXE and MOT compared to CON, but no major 

metabolite shifts were identified in response to EXE or MOT. Therefore, we performed a cluster 

analysis, identifying clusters based on the hierarchical clustering, to stratify metabolites into six 

main groups (Figure 2A). To probe possible exercise-induced up- and downregulations of 

individual metabolites in milk, we performed volcano plot analysis compared to CON (Log2 fold 

scale with p<0.05). Compared to CON, EXE increased 1,7-dimethyluric acid (p=0.026) and 

decreased p-cresol sulfate and xanthurenate (p<0.05) (Figure 2B). MOT increased nine metabolites 

including caffeine and 1,7-dimethyluric acid (p<0.05) compared to CON (Figure 2C). Neither 3′-SL 

nor 12,13-diHOME were changed in EXE or MOT compared to CON (Figure 2B-C). However, 

both EXE and MOT significantly increased the abundance of 1,7-Dimethyluric acid, compared to 

CON (Figure 2D). Thus, while no major differences were observed between groups, our analysis 

identified the caffeine byproduct 1,7-dimethyluric acid to be increased in both EXE and MOT. 

For all six clusters that were identified during the cluster analysis, z-scores were 

calculated and plotted to visualize interesting differentiations between groups. We proceeded with 

analyses of cluster 1-5 (Figure S.1), since interesting differentiations of EXE and MOT compared to 

CON and of each other were found in these clusters. In cluster 1, EXE and MOT differed by being 

in a positive direction compared to CON (Figure 2E). In cluster 2 (Figure S.1E) and 3 (Figure 

S.1H), MOT differed by being in a positive and negative direction, respectively, compared to the 

other two groups. In cluster 4 (Figure 2I), and 5 (Figure S.1P), EXE was in a positive and negative 

direction, respectively, compared to the other two groups. Enrichment analyses in cluster 1 (Figure 

2F) showed that caffeine metabolism pathway, which might be involved in lipolysis during 
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exercise, was enriched in EXE and MOT combined compared to CON (-Log10 p=2.010). 

Identifying significantly enriched metabolites in the caffeine metabolism pathway revealed that 

relative abundance of the metabolite caffeine was higher in MOT compared to CON (p<0.01) 

(Figure 2G). A positive correlation was found between caffeine and active min per day (p=0.029) 

(Figure 2H). Enrichment analysis in cluster 4 (Figure 2J) showed that EXE increased 23 different 

metabolic pathways, among them citric acid cycle (TCA cycle), compared to CON and MOT 

combined (-Log10 p>1.3). The metabolite oxoglutarate was involved in the regulation of all 23 

pathways with a higher relative abundance in EXE compared to MOT (p<0.05) (Figure 2K). 

Oxoglutarate is involved in the TCA cycle, indicating an overall change in TCA cycle activity in 

EXE. Positive correlations were found between oxoglutarate and MVPA (p=0.041) (Figure 2L) as 

well as between oxoglutarate and maternal body weight at day 7-14 after delivery (p=0.042) (Figure 

2M). Overall, we observed higher relative abundances of caffeine and oxoglutarate after prenatal 

exercise interventions and positive correlations between these metabolites and PA level. 
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Figure 2. Structured supervised exercise training or motivational counselling on physical activity influence 1,7-

dimethyluric acid, caffeine, and oxoglutarate. 

Heatmap (A) and volcano plots (B-C) representing metabolites comparing the fold induction of control with the P 

value. Relative abundance of (D) 1,7-dimethyluric acid. Z-scores for CON, EXE, and MOT in cluster 1 (E) and 4 (I). 

Pathway regulations in cluster 1 (F) and 4 (J) with significantly enriched pathways (-Log10 p value>1.3) in green. 

Relative abundances of metabolites involved in pathway regulations; (G) caffeine, and (K) oxoglutarate (involved in all 

23 significantly changed pathways). Data are median (IQR) (D, G, K) or mean ± SEM (E, I) (CON: n=18; EXE: n=38; 

MOT: n=43). * represents difference versus CON (* p<0.05, **p<0.01), # represents differences versus MOT (p<0.05). 

Significant correlations between caffeine and active min per day (H), oxoglutarate and MVPA (L), and oxoglutarate 

and maternal weight 7-14 days pp (M) (n=97). Student’s t-tests were used for B-C and Kruskal-Wallis tests with 

wilcoxon rank sum tests for D, G, and K. Linear regression analyses were used for H, L and M. CON; Control, EXE; 

Structured supervised exercise training, MOT; Motivational counselling on physical activity, MVPA; Moderate to 

vigorous physical activity, PP; Postpartum, IQR; interquartile range. 
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Lipids 

Lipidomic profiling can expand our understanding of lipid alterations in response to exercise. Two-

way hierarchical clustering of normalized lipids showed differences in relative abundances in both 

EXE and MOT compared to CON, with overall lower normalized lipid abundances in EXE and 

MOT compared to CON (Figure 3A). To explore possible exercise-induced changes in individual 

lipids in milk, we performed volcano plot analysis compared to CON (Log2 fold scale with 

p<0.05). Compared to CON, EXE decreased seven lipids, including PC(34:0), PC(36:1), and 

PC(36:2) (p<0.05) (Figure 3B), and MOT decreased 14 lipids, also including PC(34:0), PC(36:1), 

and PC(36:2) (p<0.05) (Figure 3C). To investigate changes in lipids between the three groups, we 

performed principal component analysis, which showed no clear separation of the three datasets, 

suggestive of no distinct influence of the two interventions on metabolic perturbations of lipids 

(Figure 3D).  

We divided the lipids into six classes including oxidized phosphatidylethanolamines 

(O-PE) & phosphatidylethanolamines (PE), fatty acid hydroxy fatty acids (FAHFA), 

lysophosphatidylcholines (LPC) & phosphatidylcholines (PC) (Figure 3E-G), triglyceride (TG) & 

fatty acids (FA), phosphatidylglycerol (PG), and sphingolipids (SM) (Figure S.2A-D). In the O-PE 

and PE class, relative abundances of the three lipids O-PE(36:6), O-PE(38:7), and PE(38:6) were 

lower in MOT compared to CON (p<0.05). PE(38:6) (p=0.033) and PE(34:2) (p=0.014) were also 

lower in MOT compared to EXE (Figure 3E). Compared to CON, MOT decreased relative 

abundance of FAHFA(36:3) (p=0.045) (Figure 3F). In the LPC and PC class, EXE decreased 

LPC(18:0) compared to CON (p=0.042) (Figure 3G). Thus, our data suggest that prenatal exercise 

interventions decrease several lipids. Positive correlations were found among LPC(18:2) and steps 

per day (p=0.034) (Figure 3H), PC(36:1) and active min per day (p=0.009) (Figure 3J), as well as 

between PC(36:2) and active min per day (p=0.046) (Figure 3K), indicating that these lipids are 
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directly correlated to the amount of steps as well as duration of PA. In addition, maternal weight at 

day 7-14 after delivery was negatively correlated with both LPC(18:2) (Figure 3I) and PC(36:2) 

(Figure 3L), meaning that increases in these lipids correlated with lower maternal weight.  

Overall, we observed lower relative abundances of some phospholipids and FAHFA(36:3) with 

prenatal exercise interventions but positive correlations between several other phospholipids and 

PA level. 
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Figure 3. Structured supervised exercise training or motivational counselling on physical activity changes several 

lipids. 

Heatmap (A) and volcano plots (B-C) representing lipids comparing the fold induction of control with the P value. 

Principal component analysis showing the first two components (D). Relative abundances of lipids; (E) O-PE and PE (5 

lipids), (F) FAHFA(36:3), and (G) LPC and PC (7 lipids). Data are median (IQR) (CON: n=18; EXE: n=38; MOT: 

n=43). * represents difference versus CON (p<0.05), # represents differences versus EXE (p<0.05), and tendencies are 

marked with parentheses (p=0.05-0.1). Significant correlations of LPC(18:2) with steps (H) and maternal weight 7-14 

days pp (I), PC(36:1) and active min per day (J), and PC(36:2) with active min per day (K) and maternal weight 7-14 

days postpartum (L) (n=97). Student’s t-tests were used for B-C and Kruskal-Wallis tests with wilcoxon rank sum tests 

for E-G. Linear regression analyses were used for H- L. CON; Control, EXE; Structured supervised exercise training, 

MOT; Motivational counselling on physical activity, O-PE; Oxidized phosphatidylethanolamines, PE; 

Phosphatidylethanolamines, FAHFA; Fatty acid hydroxy fatty acids, LPC; Lysophosphatidylcholines, PC; 

Phosphatidylcholines, PP; Postpartum, IQR; interquartile range. 
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Discussion 

Maternal prenatal exercise improves offspring metabolic health and decreases the risk of developing 

obesity and cardiovascular disease later in life, at least in animal models (2), but the underlying 

mechanisms remain unclear. Major technological advancements over the past decade have enabled 

the expansion of the application of metabolomics and lipidomics techniques to map metabolic 

responses to exercise or other stimuli (20). In the present randomized controlled trial, we used 

UHPLC–MS untargeted metabolomics and lipidomics to investigate the effects of two different 

prenatal exercise interventions (EXE and MOT) on the human breast milk metabolome and 

lipidome 7-14 days after delivery compared to control (CON). Overall, we found positive 

correlations of some metabolites and several phospholipids with PA measures, and changes in 

relative abundances of some metabolites and lipids with EXE and MOT compared to CON. 

However, EXE and MOT did not elicit major metabolite or lipid changes compared to CON. This 

could be due to only moderate adherence rate, at least among participants in EXE. Our data showed 

that three metabolites and seven lipids were changed in EXE compared to CON, whereas MOT 

increased nine metabolites and decreased 14 lipids, compared to CON.  

While our study uncovered some changes in metabolites and lipids in response to 

exercise training during pregnancy, applied via EXE and MOT, the numbers of regulated 

metabolites and lipids in EXE and MOT compared to CON were markedly lower than findings of 

metabolic changes in previous studies after exercise. However, these studies investigated the effects 

of an acute bout of exercise (within 24 hours after endurance or resistance exercise) on metabolic 

profile measured by metabolomics in human blood, urine or sweat (21–23). The exercise-induced 

increase in breast milk concentration of the lipokine 12,13-diHOME as indicated by Wolfs et al. 

was also measured after acute exercise (9). The aim of our study was to investigate if exercise 

training performed on a regular basis throughout pregnancy affected mature breast milk 
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composition. Since mature breast milk cannot be pumped before around one week after delivery, an 

intermediate period between termination of prenatal interventions (at latest at delivery) and breast 

milk sampling 7-14 days postpartum could not be avoided. Nevertheless, prenatal exercise training 

may induce long-lasting adaptations in the breast milk metabolome and lipidome, but it is uncertain 

whether the metabolite and lipid changes found in EXE and MOT in our study were caused by 

lasting effects of the interventions or might be confounded by other factors. Moreover, confounding 

factors influencing breast milk composition might blur potential effects of prenatal exercise training 

on the metabolome and lipidome. Other factors that might influence breast milk composition could 

be medication use in relation to delivery (24), or maternal obesity, which has been associated with 

changes in the human milk metabolome (25,26). In our data we found correlations between 

maternal weight 7-14 days after delivery and some metabolites or lipids, indicating that other 

factors such as maternal weight at the sampling time point may have influenced the results. 

Based on enrichment analysis in Metaboanalyst we reported that EXE changed 

metabolites related to several metabolic pathways, among them TCA cycle, gluconeogenesis, amino 

acid metabolism pathways, and urea cycle. Oxoglutarate was involved in the regulation of all the 23 

changed metabolic pathways in EXE and was higher in EXE compared to MOT. Further, linear 

regression analysis showed a positive correlation between oxoglutarate and MVPA. Other studies 

have also found increased oxoglutarate in plasma and urine after both acute endurance and 

resistance exercise (21,22), indicating for example increased TCA cycle activity and ATP turnover 

with exercise. 

Further, we found caffeine metabolism to be enriched in EXE and MOT combined 

compared to CON. Caffeine was the most relevant metabolite driving the enrichment of caffeine 

metabolism with prenatal exercise, and we showed that relative abundance of caffeine was higher in 

MOT compared to CON, but not in EXE compared to CON. We also reported a positive correlation 
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between caffeine and active min per day measured by the activity tracker. Caffeine might mobilize 

fatty acids to provide energy by stimulating lipolysis during exercise, as indicated by studies of 

caffeine supplementation prior to exercise (27). Caffeine metabolism has been shown to be 

increased in serum in young males after marathon running (28), but neither the marathon running 

study nor our breast milk study controlled for intake of dietary caffeine. Thus, it may be plausible 

that the increased caffeine metabolism could result from exogenous caffeine intake. The caffeine 

byproduct 1,7-dimethyluric acid was increased in both EXE and MOT, supporting the increased 

caffeine metabolism in human breast milk after prenatal exercise.  

We found no changes in 3’-SL or 12,13-diHOME with EXE or MOT compared to 

CON. This is in contrast to previous studies on human breast milk that have showed that average 

prenatal PA measured with accelerometry three times during pregnancy correlated with 3’-SL 

concentration (8), and that 12,13-diHOME concentration was increased after postpartum acute 

maternal exercise (9). This might be explained by the moderate adherence rate to exercise as well. 

With regards to changes in lipids, our data indicated lower relative abundances of 

several lipids from the O-PE & PE, FAHFA, and LPC & PC with prenatal exercise interventions 

compared to CON. In contrast, increased levels of phospholipids, including O-PE, PE, LPC, PC and 

LPE, after exercise have been reported in previous lipidomic studies in humans (23) and animals 

(29,30). Contrepois et al. showed a rapid and transient increase in 23 PC’s after acute exercise in 

blood from human males and females aged 40-75 years (23). Likewise, Nolazco Sassot et al. 

demonstrated that several phospholipids including PC(34:1), PC(36:2), PC(36:4), and LPC(18:0) 

were increased in blood from horses after an acute bout of supramaximal exercise at 115% of 

maximal oxygen consumption (29). Moreover, Hoene et al. showed increased levels of several 

LPCs and LPEs in mice liver after acute exercise (30). The findings from these studies are in line 

with our data showing positive correlations of PA measures with LPC(18:2), PC(36:1), and 
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PC(36:2). Phospholipids are major structural components of cell membranes and increased 

phospholipid levels after exercise might be explained by increased turnover of cell membranes 

during exercise due to exercise-induced lipolysis and cell membrane damage. This may enable 

active mobilization of phospholipids as energy substrates or for cell membrane repair (20).  

In contrast with the literature, our data indicated lower relative abundance of 

FAHFA(36:3) in MOT compared to CON, suggesting that prenatal exercise decreased FAHFA 

levels in breast milk. FAHFA, which is a lipid class that acts as lipokines (10), has been indicated to 

confer anti-diabetic and anti-inflammatory effects (31), and to be increased with exercise (32), and 

decreased in human breast milk from obese mothers collected 72 hours after delivery (33). 

 

Strengths and limitations 

In this study, we standardized breast milk sampling by providing the participants with thorough 

verbal and written instructions on how and when to sample at home 7-14 days after delivery. 

However, we did not include any restrictions on exercise or fasting prior to sampling, as seen in 

other studies applying metabolomics and lipidomics analyses to investigate metabolic response to 

acute exercise (9,21,23,34). The human metabolome and lipidome are dynamically changing and 

metabolomics/lipidomics analyses do only provide a molecular snapshot of phenotypic traits (20). 

Therefore, it might be important to control for confounding factors such as delivery mode as well as 

exercise and diet prior to sampling, when investigating exercise-induced changes in metabolites and 

lipids. However, a strength of our study is that it offered the possibility to investigate the effects of 

prenatal exercise on the human milk metabolome and lipidome in a real-life setting. Our breast milk 

study included 99 women of normal weight on average, non-smoking during pregnancy and overall 

likely healthier and more motivated to increase PA during pregnancy given their interest in 

participation in the study, compared to pregnant women in other western countries. This may have 
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resulted in a lower potential for exercise to induce changes in the breast milk metabolome and 

lipidome in our pregnant population compared to pregnant women in countries with a more 

pronounced overweight and obesity burden in pregnant women, for example the United States (35). 

In the study by Wolfs et al., exercise-induced changes in 12,13-diHOME breast milk concentration 

were found in both women with normal weight and obesity but the changes were more pronounced 

in women with obesity (9). This may indicate that the potential for exercise-induced improvements 

of breast milk composition might be more evident among populations with overweight or obesity. 

More than 50% of our study participants had an excessive gestational weight gain according to the 

Institute of Medine’s recommendations, and similar prevalence of more than 50% of pregnant 

women having excessive gestational weight gain has been reported in both the United States and 

Europe (36). 

 

Conclusion 

This study provides comprehensive metabolomic and lipidomic profiling comparing the effects of 

two different prenatal exercise interventions on metabolite and lipid changes in human breast milk 

7-14 days after delivery. Overall, we found changes in some metabolites and lipids in human breast 

milk after both EXE and MOT compared to CON during pregnancy, as well as positive correlations 

of some metabolites and lipids with PA measures. However, prenatal exercise interventions did not 

elicit major metabolite or lipid changes compared to control. Future research is needed on pre- and 

postnatal exercise-induced adaptations to breast milk and the long-lasting effects of maternal 

prenatal exercise on offspring metabolic health. Moreover, it needs to be investigated whether 

offspring metabolic and physiological adaptations are related to the reported changes in metabolites 

and lipids in breast milk. Ultimately, exercise-induced alterations in human breast milk composition 
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can be a potential therapeutic approach to prevent development of obesity, type 2 diabetes, and 

cardiovascular disease. 
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Figure S.1. Metabolites in cluster 1-5. 

Z-scores for CON, EXE, and MOT in cluster 1-5 (A, E, H, K, P). Pathway regulations in cluster 1-5 (B, F, I, L, Q) 

with significantly enriched pathways (-Log10 p value>1.3) in green. Relative abundances of metabolites involved in 

pathway regulations; (C) caffeine, (G) 3-hydroxyanthranilate, (J) biliverdin (involved in porphyrin metabolism that 

tend to be significantly changed), (M) oxoglutarate (involved in all 23 significantly changed pathways), and (R) 

xanthurenate. Data are mean ± SEM (A, E, H, K, P) or median (IQR) (C, G, J, M, R) (CON: n=18; EXE: n=38; MOT: 

n=43). * represents difference versus CON (* p<0.05, **p<0.01), # represents differences versus MOT (p<0.05), and 

tendencies are marked with parentheses (p=0.05-0.1). Significant correlations between caffeine and active min per day 

(D), oxoglutarate and MVPA per week (N), and oxoglutarate and maternal weight 7-14 days pp (O) (n=97). 

Kruskal-Wallis tests with wilcoxon rank sum tests were used for C, G, J, M and R. Linear regression analyses were 

used for D, N and O. CON; Control, EXE; Structured supervised exercise training, MOT; Motivational counselling on 

physical activity, MVPA; Moderate to vigorous physical activity, PP; Postpartum, IQR; interquartile range. 
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Figure S.2. TG, FA, PG, and SM in the three study groups 

Relative abundances of lipids; (A) TG and FA (3 lipids), (B) PG(33:0), and (D) SM(31:1). Data are median (IQR) 

(CON: n=18; EXE: n=38; MOT: n=43). * represents difference versus CON (p<0.05), # represents differences versus 

EXE (p<0.05), and tendencies are marked with parentheses (p=0.05-0.1). Significant correlation of PG(33:0) and 

maternal weight 7-14 days pp (C). Kruskal-Wallis tests with wilcoxon rank sum tests were used for A, B, and D. Linear 

regression analysis was used for C. CON; Control, EXE; Structured supervised exercise training, MOT; Motivational 

counselling on physical activity, TG; Triglyceride, FA; Fatty acids, PG; Phosphatidylglycerol, SM; Sphingolipids, PP; 

Postpartum, IQR; interquartile range. 
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